Advertisement

Fundamentals of Adaptive Filtering

  • Paulo S.R. Diniz
Chapter

Keywords

Input Signal Adaptive Filter Newton Algorithm Unknown System Digital Subscriber Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.G. Luenberger, Introduction to Linear and Nonlinear Programming, AddisonWesley, Reading, MA, 2nd edition, 1984.Google Scholar
  2. 2.
    R. Fletcher, Practical Methods of Optimization, John Wiley&Sons, New York, NY, 2nd edition, 1990.Google Scholar
  3. 3.
    A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms and Engineering Applications, Springer, New York, NY, 2007.MATHGoogle Scholar
  4. 4.
    B. Widrow and M.E. Hoff, ‘‘Adaptive switching circuits,’’ WESCOM Conv. Rec., pt. 4, pp. 96-140, 1960.Google Scholar
  5. 5.
    B. Widrow, J.M. McCool, M.G. Larimore, and C.R. Johnson, Jr., ‘‘Stationary and nonstationary learning characteristics of the LMS adaptive filters,’’ Proceedings of the IEEE, vol. 64, pp. 1151-1162, Aug. 1976.Google Scholar
  6. 6.
    A. Papoulis, Signal Analysis, McGraw Hill, New York, NY, 1977.MATHGoogle Scholar
  7. 7.
    A.V. Oppenheim, A.S. Willsky, and S.H. Nawab, Signals and Systems, Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1997.Google Scholar
  8. 8.
    P.S.R. Diniz, E.A.B. da Silva, and S.L. Netto, Digital Signal Processing: System Analysis and Design, Cambridge University Press, Cambridge, UK, 2002.Google Scholar
  9. 9.
    A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, McGraw Hill, New York, NY, 2005.Google Scholar
  10. 10.
    L.B. Jackson, Digital Filters and Signal Processing, Kluwer Academic Publishers, Norwell, MA, 3rd edition, 1996.Google Scholar
  11. 11.
    R.A. Roberts and C.T. Mullis, Digital Signal Processing, Addison-Wesley, Reading, MA, 1987.MATHGoogle Scholar
  12. 12.
    J.G. Proakis and D.G. Manolakis, Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 4th edition, 2007.Google Scholar
  13. 13.
    T. Bose, Digital Signal and Image Processing, JohnWiley & Sons, New York, NY, 2004.Google Scholar
  14. 14.
    A. Papoulis, Probability, RandomVariables, and Stochastic Processes, McGrawHill, New York, NY, 3rd edition, 1991.Google Scholar
  15. 15.
    P.Z. Peebles, Jr., Probability, Random Variables, and Random Signal Principles, McGraw Hill, New York, NY, 3rd edition, 1993.Google Scholar
  16. 16.
    W.A. Gardner, Introduction to Random Processes, McGraw Hill, New York,NY, Second edition, 1990.Google Scholar
  17. 17.
    C.R. Johnson, Jr., Lectures on Adaptive Parameter Estimation, Prentice Hall, Englewood Cliffs, NJ, 1988.MATHGoogle Scholar
  18. 18.
    T. Söderström and P. Stoica, System Identification, Prentice Hall International, Hemel Hempstead, Hertfordshire, 1989.MATHGoogle Scholar
  19. 19.
    G. Strang, Linear Algebra and Its Applications, Academic Press, New York, NY, 2nd Edition, 1980.Google Scholar
  20. 20.
    L.J. Griffiths and C.W. Jim, ‘‘An alternative approach to linearly constrained adaptive beamforming,’’ IEEE Trans. on Antennas and Propagation, vol. AP-30, pp. 27-34, Jan. 1982.Google Scholar
  21. 21.
    M.L.R. de Campos, S. Werner, and J.A. Apolin’ario, Jr., ‘‘Constrained adaptation algorithms employing Householder transformation,’’ IEEE Trans. on Signal Processing, vol. 50, pp. 2187- 2195, Sept. 2002.Google Scholar
  22. 22.
    D.H. Johnson and D.E. Dudgeon, Array Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1993.MATHGoogle Scholar
  23. 23.
    H.L. Van trees, Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory, John Wiley & Sons, New York, NY, 2002.Google Scholar
  24. 24.
    A. Papoulis, ‘‘Predictable processes and Wold’s decomposition: A review,’’ IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-33, pp. 933-938, Aug. 1985.Google Scholar
  25. 25.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, Englewood Cliffs, NJ, 1993.MATHGoogle Scholar
  26. 26.
    S.L. Marple, Jr., Digital Spectral Analysis, Prentice Hall, Englewood Cliffs, NJ, 1987.Google Scholar
  27. 27.
    M.L. Honig and D.G. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications, Kluwer Academic Publishers, Boston, MA, 1984.MATHGoogle Scholar
  28. 28.
    B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.MATHGoogle Scholar
  29. 29.
    S.T. Alexander, Adaptive Signal Processing, Springer Verlag, New York, NY, 1986.MATHGoogle Scholar
  30. 30.
    J.R. Treichler, C.R. Johnson, Jr., and M.G. Larimore, Theory and Design of Adaptive Filters, John Wiley & Sons, New York, NY, 1987.MATHGoogle Scholar
  31. 31.
    M. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, Inc., New York, NY, 2nd Edition, 2001.Google Scholar
  32. 32.
    P. Strobach, Linear Prediction Theory, Springer Verlag, New York, NY, 1990.MATHGoogle Scholar
  33. 33.
    S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, 4th edition, 2002.Google Scholar
  34. 34.
    A.H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons, Hoboken, NJ, 2003.Google Scholar
  35. 35.
    S.U. Qureshi, ‘‘Adaptive Equalization,’’ Proceedings of the IEEE, vol. 73, pp. 1349-1387, Sept. 1985.Google Scholar
  36. 36.
    J.G. Proakis, Digital Communication, McGraw Hill, New York, NY, 4th edition, 2001.Google Scholar
  37. 37.
    L.C. Wood and S. Treitel, ‘‘Seismic signal processing,’’ Proceedings of the IEEE, vol. 63, pp. 649-661, Dec. 1975.Google Scholar
  38. 38.
    D.G. Messerschmitt, ‘‘Echo cancellation in speech and data transmission,’’ IEEE Journal on Selected Areas in Communications, vol. SAC-2, pp. 283-296, March 1984.Google Scholar
  39. 39.
    M.L. Honig, ‘‘Echo cancellation of voiceband data signals using recursive least squares and stochastic gradient algorithms,’’ IEEE Trans. on Communications, vol. COM-33, pp. 65-73, Jan. 1985.Google Scholar
  40. 40.
    S. Subramanian, D.J. Shpak, P.S.R. Diniz, and A. Antoniou, ‘‘The performance of adaptive filtering algorithms in a simulated HDSL environment,’’ Proc. IEEE Canadian Conf. Electrical and Computer Engineering, Toronto, Canada, pp. TA 2.19.1-TA 2.19.5, Sept. 1992.Google Scholar
  41. 41.
    D. W. Lin, ‘‘Minimum mean-squared error echo cancellation and equalization for digital subscriber line transmission: Part I - theory and computation,’’ IEEE Trans. on Communications, vol. 38, pp. 31-38, Jan. 1990.Google Scholar
  42. 42.
    D.W. Lin, ‘‘Minimum mean-squared error echo cancellation and equalization for digital subscriber line transmission: Part II - a simulation study,’’ IEEE Trans. on Communications, vol. 38, pp. 39-45, Jan. 1990.Google Scholar
  43. 43.
    L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice Hall, Englewood Cliffs, NJ, 1978.Google Scholar
  44. 44.
    B.D. Van Veen and K.M. Buckley, ‘‘Beamforming: a versatile approach to spatial filtering,’’ IEEE Acoust., Speech, Signal Processing Magazine, vol. 37, pp. 4-24, April 1988.Google Scholar
  45. 45.
    B. Widrow, J.R. Grover, Jr., J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearns, J.R. Zeidler, E. Dong, Jr., and R.C. Goodlin, ‘‘Adaptive noise cancelling: Principles and applications,’’ Proceedings of the IEEE, vol. 63, pp. 1692-1716, Dec. 1975.Google Scholar
  46. 46.
    M. Abdulrahman and D.D. Falconer, ‘‘Cyclostationary crosstalk suppression by decision feedback equalization on digital subscriber line,’’ IEEE Journal on Selected Areas in Communications, vol. 10, pp. 640-649, April 1992.Google Scholar
  47. 47.
    H. Samueli, B. Daneshrad, R.B. Joshi, B.C. Wong, and H.T. Nicholas, III, ‘‘A 64-tap CMOS echo canceller/decision feedback equalizer for 2B1Q HDSL transceiver,’’ IEEE Journal on Selected Areas in Communications, vol. 9, pp. 839-847, Aug. 1991.Google Scholar
  48. 48.
    J.-J. Werner, ‘‘The HDSL environment,’’ IEEE Journal on Selected Areas in Communications, vol. 9, pp. 785-800, Aug. 1991.Google Scholar
  49. 49.
    J.W. Leichleider, ‘‘High bit rate digital subscriber lines: A review of HDSL progress,’’ IEEE Journal on Selected Areas in Communications, vol. 9, pp. 769-784, Aug. 1991.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations