Advertisement

Blind Adaptive Filtering

  • Paulo S.R. Diniz
Chapter

Keywords

Quadrature Amplitude Modulation Equalize Signal Full Column Rank Blind Deconvolution Constant Modulus Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Ding and Y. Li, Blind Equalization and Identification, Marcel Dekker, NewYork, N.Y., 2001.Google Scholar
  2. 2.
    S. Haykin, Editor, Unsupervised Adaptive Filtering,Vol. I: Blind Source Separation, JohnWiley & Sons, NewYork, NY, 2000.Google Scholar
  3. 3.
    S. Haykin, Editor, Unsupervised Adaptive Filtering, Vol. II: Blind Deconvolution, John Wiley & Sons, NewYork, NY, 2000.Google Scholar
  4. 4.
    C.-Y. Chi, C.-C. Feng, C.-H. Chen, and C.-Y. Chen, Blind Equalization and System Identification, Springer, London, UK, 2006.Google Scholar
  5. 5.
    Y. Sato, ‘‘A method of self-recovering equalization for multi-level amplitude modulation,’’ IEEE Trans. on Communications, vol. COM-23, pp. 679-682, June 1975.Google Scholar
  6. 6.
    A. Benveniste, M. Gousat, and R. Ruget, ‘‘Robust identification nonminimum phase system: Blind adjustment of a linear equalizer in data communications,’’ IEEE Trans. on Automatic Control, vol. AC-25, pp. 385-399, June 1980.Google Scholar
  7. 7.
    D. N. Godard, ‘‘Self-recovering equalization and carrier tracking in two-dimensional data communication system,’’ IEEE Trans. on Communications, vol. COM-28, pp. 1867-1875, Nov. 1980.Google Scholar
  8. 8.
    J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, Kluwer Academic Publishers, Boston, MA, 3rd edition, 2004.Google Scholar
  9. 9.
    C. L. Nikias and A. P. Petropulu, Higher-order spectra analysis: A nonlinear signal processing framework, Prentice Hall, Englewood Cliffs, NJ, 1993.Google Scholar
  10. 10.
    C. B. Papadias and D.T. M. Slock, ‘‘Normalized sliding windowconstant-modulus and decisiondirected algorithms: A link between blind equalization and classical adaptive filtering,’’ IEEE Trans. on Signal Processing, vol. 45, pp. 231-235, Jan. 1997.Google Scholar
  11. 11.
    E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayarargue, ‘‘Subspace methods for the blind identification of multichannel FIR filters,’’ IEEE Trans. on Signal Processing, vol. 43, pp. 516-525, Feb. 1995.Google Scholar
  12. 12.
    D. Gesbert and P. Duhamel, ‘‘Unbiased blind adaptive channel identification,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 148-158, Jan. 2000.Google Scholar
  13. 13.
    X. Li and H. Fan, ‘‘Direct estimation of blind zero-forcing equalizers based on second-order statistics,’’ IEEE Trans. on Signal Processing, vol. 48, pp. 2211-2218, Aug. 2000.Google Scholar
  14. 14.
    L. Tong, and Q. Zhao, ‘‘Jointly order detection and blind channel estimation by least squares smoothing,’’ IEEE Trans. on Signal Processing, vol. 47, pp. 2345-2355, Sept. 1999.Google Scholar
  15. 15.
    A. P. Liavas, P. A. Regalia, and J.-P. Delmas, ‘‘Blind channel approximation: effective channel order determination,’’ IEEE Trans. on Signal Processing, vol. 47, pp. 3336-3344, Dec. 1999.Google Scholar
  16. 16.
    L.Tong and Z. Ding, ‘‘Single-user channel estimation and equalization,’’ IEEE Signal Processing agazine, vol. 17, pp. 17-28, May 2000.Google Scholar
  17. 17.
    L. Tong, G. Xu, and T. Kailath, ‘‘Blind identification and equalization based on second-order statistics: A time domain approach,’’ IEEE Trans. on Information Theory, vol. 40, pp. 340-349, March 1994.Google Scholar
  18. 18.
    L. Tong, G. Xu, B. Hassibi, and T. Kailath, ‘‘Blind identification and equalization based on second-order statistics: A frequency-domain approach,’’ IEEE Trans. on Information Theory, vol. 41, pp. 329-334, March 1994.Google Scholar
  19. 19.
    E. Serpedin and G. B. Giannakis, ‘‘A simple proof of a known blind channel identifiability result,’’ IEEE Trans. on Signal Processing, vol. 47, pp. 591-593, Feb. 1999.Google Scholar
  20. 20.
    Y. Li and Z. Ding, ‘‘Global convergence of fractionally spaced Godard (CMA) adaptive equalizers,’’ IEEE Trans. on Signal Processing, vol. 44, pp. 818-826, April 1996.Google Scholar
  21. 21.
    A. J. Viterbi, Principles of Spread Spectrum Communication, Addison Wesley, Reading, MA, 1995.Google Scholar
  22. 22.
    M. Honig and M. K. Tsatsanis, ‘‘Adaptive techniques for multiuser CDMA receivers,’’ IEEE Signal Processing Magazine, vol. 17, pp. 49-61, May 2000.Google Scholar
  23. 23.
    S. Verdu, Multiuser Detection, Cambridge University Press, Cambridge, UK, 1998.Google Scholar
  24. 24.
    M. L. Honig, U. Madhow, and S. Verdú, ‘‘Blind adaptive multiuser detection,’’ IEEE Trans. on Information Theory, vol. 41, pp. 944-960, July 1995.Google Scholar
  25. 25.
    M. K. Tsatsanis, ‘‘Inverse filtering criteria for CDMA systems,’’ IEEE Trans. on Signal Processing, vol. 45, pp. 102-112, Jan. 1997.Google Scholar
  26. 26.
    Z. Xu and M. K. Tsatsanis, ‘‘Blind adaptive algorithms for minimum varianceCDMAreceivers,’’ IEEE Trans. on Signal Processing, vol. 49, pp. 180-194, Jan. 2001.Google Scholar
  27. 27.
    Z. Xu, P. Liu, and X. Wang, ‘‘Blind multiuser detection: From MOE to subspace methods,’’ IEEE Trans. on Signal Processing, vol. 52, pp. 510-524, Feb. 2004.Google Scholar
  28. 28.
    X. Wang and H. V. Poor, Wireless Communication Systems: Advanced Techniques for Signal Reception, Prentice Hall, Upper Saddle River, NJ, 2003.Google Scholar
  29. 29.
    E. de Carvalho and D.T. M. Slock, ‘‘Blind and semi-blind FIR multichannel estimation: (Global) Identifiability conditions,’’ IEEE Trans. on Signal Processing, vol. 52, pp. 1053-1064, April 2004.Google Scholar
  30. 30.
    A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-TimeWireless Communications, Cambridge University Press, Cambridge, UK, 2003.Google Scholar
  31. 31.
    E. G. Larsson and P. Stoica, Space-Time Block Coding forWireless Communications, Cambridge University Press, Cambridge, UK, 2003.Google Scholar
  32. 32.
    A. Hottinen, O. Tirkkonen, and R.Wichman, Multi-Antenna Transceiver Techniques for 3G and Beyond, JohnWiley, NewYork, NY, 2003.Google Scholar
  33. 33.
    H. L. Van Trees, Optimum Array Processing: Detection, Estimation, and Modulation Theory, Part IV, JohnWiley Interscience, NewYork, NY, 2002.Google Scholar
  34. 34.
    R. C. de Lamare and P. S. R. Diniz, ‘‘Blind constrained set-membership algorithms with timevarying bounds for CDMA interference suppression,’’ Proc. IEEE Intern. Conf. on Acoust. Speech and Signal Processing, Toulouse, France, pp. IV-617 - IV-620, May 2006.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations