Advertisement

Nonlinear Adaptive Filtering

  • Paulo S.R. Diniz
Chapter

Keywords

Radial Basis Function Radial Basis Function Network Multilayer Perceptron Volterra Series Convergence Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. J. Mathews, "Adaptive polynomial filters",IEEE Signal Processing Magazine, vol. 8, pp.10-26, Nov. 1991.Google Scholar
  2. 2.
    V. J. Mathews and G. L. Sicuranza,Polynomial Signal Processing, John Wiley & Sons, NewYork, NY, 2000.Google Scholar
  3. 3.
    J. Lee and V. J. Mathews, "A fast recursive least squares adaptive second-order Volterra filterand its performance analysis",IEEE Trans. on Signal Processing, vol. 41, pp. 1087-1101, March 1993.Google Scholar
  4. 4.
    M. A. Syed and V. J. Mathews, "Lattice algorithms for recursive least squares adaptive secondorderVolterra filtering",IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 41, pp. 202-214, March 1994.Google Scholar
  5. 5.
    M. A. Syed and V. J. Mathews, "QR-decomposition based algorithms for adaptive Volterra filtering",IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol.40, pp. 372-382, June 1993.Google Scholar
  6. 6.
    V. J. Mathews, "Adaptive Volterra filters using orthogonal structures",IEEE Signal Processing Letters, vol. 3, pp. 307-309, Dec. 1996.Google Scholar
  7. 7.
    J. Lee and V. J. Mathews, "A stability result for RLS adaptive bilinear filters",IEEE Signal Processing Letters, vol. 1, pp. 191-193, Dec. 1994.Google Scholar
  8. 8.
    D.Williamson, R. A. Kennedy, and G. Pulford, "Block decision feedback equalization",IEEE Trans. on Communications, vol. 40, pp. 255-264, Feb. 1992.Google Scholar
  9. 9.
    B. Mulgrew, "Applying radial basis functions",IEEE Signal Processing Magazine, vol. 13, pp.50-65, March 1996.Google Scholar
  10. 10.
    F.-C. Zheng, S. McLaughlin, and B. Mulgrew, "Blind equalization of nonminimum phase channels:High order cummulant based algorithm",IEEE Trans. on Signal Processing, vol. 41, pp.681-691, Feb. 1993.Google Scholar
  11. 11.
    S. Chen, B. Mulgrew, and S. McLaughlin, "Adaptive Bayesian equalizer with decision feedback",IEEE Trans. on Signal Processing, vol. 41, pp. 2918-2926, Sep. 1993.Google Scholar
  12. 12.
    S. Chen, S. McLaughlin, B. Mulgrew, and P. M. Grant, "Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels",IEEE Trans. on Communications, vol. 43, pp.1937-1946, May 1995.Google Scholar
  13. 13.
    S. Chen, B. Mulgrew, and P. M. Grant, "A clustering technique for digital communication channel equalization using radial basis function networks",IEEE Trans. on Neural Networks, vol. 4, pp. 570-579, July 1993.Google Scholar
  14. 14.
    S. Chen and B. Mulgrew, "Reconstruction of binary signals using an adaptive-radial-basis function equaliser",Signal Processing, vol. 22, pp. 77-93, Jan. 1991.Google Scholar
  15. 15.
    S. Chen and B. Mulgrew, "Overcoming co-channel interference using an adaptive radial basis function equaliser",Signal Processing, vol. 28, pp. 91-107, July 1992.Google Scholar
  16. 16.
    S. Chen, S. McLaughlin, and B. Mulgrew, "Complex valued radial basis function network, PartI: Network architecture and learning algorithms",Signal Processing, vol. 35, pp. 19-31, Jan.1994.Google Scholar
  17. 17.
    S. Chen, S. McLaughlin, and B. Mulgrew, "Complex valued radial basis function network, PartII: Application to digital communications channel equalisation",Signal Processing, vol. 36, pp.175-188, March 1994.Google Scholar
  18. 18.
    I. Cha and S. Kassam, "Channel equalization using adaptive complex radial basis function networks",IEEE Trans. on Selected Areas in Communications, vol. 13, pp. 122-131, Jan.1995.Google Scholar
  19. 19.
    I. Cha and S. Kassam, "Interference cancellation using radial basis function networks",Signal Processing, vol. 47, pp. 247-268, Dec. 1995.Google Scholar
  20. 20.
    D. Gonzaga, M. L. R. de Campos, and S. L. Netto, "Composite squared-error algorithm for training feedforward neural networks",Proc. of the 1998 IEEE Digital Filtering and Signal Processing Conference, Victoria, B.C., June 1998.Google Scholar
  21. 21.
    B.Widrow and S. D. Stearns,Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.Google Scholar
  22. 22.
    A. Papoulis,Probability, RandomVariables, and Stochastic Processes, McGrawHill, NewYork,NY, 3rd edition, 1991.Google Scholar
  23. 23.
    S. U. Qureshi, "Adaptive equalization",Proceedings of the IEEE, vol-73, pp. 1349-1387, Sept.1985.Google Scholar
  24. 24.
    B.Widrow and E.Walach,Adaptive Inverse Control, Prentice Hall, Englewood Cliffs, NJ, 1996.Google Scholar
  25. 25.
    K. K. Johnson and I. W. Sandberg, "Notes on the stability of bilinear filters",IEEE Trans. on Signal Processing, vol. 46, pp. 2056-2058, July 1998.Google Scholar
  26. 26.
    F.-L. Luo and R. Unbehauen,Applied Neural Networks for Signal Processing, CambridgeUniversity Press, Cambridge, U.K, 1996.Google Scholar
  27. 27.
    S. Haykin,Neural Networks: A Comprehensive Foundation, Prentice Hall, Englewood Cliffs,NJ, 2nd edition, 1999.Google Scholar
  28. 28.
    L.-X.Wang,Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice Hall,Englewood Cliffs, NJ, 1994.Google Scholar
  29. 29.
    C. Nikias and A. P. Petropulu,Higher-order Spectra Analysis: A Nonlinear Signal Processing Framework, Prentice Hall, Englewood Cliffs, NJ, 1993.Google Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Paulo S.R. Diniz
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations