Advertisement

Phylum XX. Dictyoglomi phyl. nov.

  • Bharat K. C. Patel

Abstract

The phylum is currently represented by a single class, order, family, and genus. The phylum forms a deep line of descent with its related phyla Thermomicrobia and DeinococcusThermus (Figure 123).

Keywords

Cell Wall Layer Thioctic Acid Spherical Ball Filamentous Cell Pyridoxine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. Saiki, T., Y. Kobayashi, K. Kawagoe and T. Beppu. 1985. Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35: 253–259.CrossRefGoogle Scholar
  2. Adamsen, A.K., J. Lindhagen and B.K. Ahring. 1995. Optimization of extracellular xylanase production by Dictyoglomus sp. B1 in continuous culture. Appl. Microbiol. Biotechnol. 44: 327–332.CrossRefGoogle Scholar
  3. Brock, T.D. and K. Od’ea. 1977. Amorphous ferrous sulfide as a ­reducing agent for culture of anaerobes. Appl. Environ. Microbiol. 33: 254–256.PubMedGoogle Scholar
  4. Ding, Y.H., R.S. Ronimus and H.W. Morgan. 1999. Purification and properties of the pyrophosphate-dependent phosphofructokinase from Dictyoglomus thermophilum Rt46 B.1. Extremophiles 3: 131–137.PubMedCrossRefGoogle Scholar
  5. Ding, Y.H.R., R.S. Ronimus and H.W. Morgan. 2000. Sequencing, cloning, and high-level expression of the pfp gene, encoding a PPi-dependent phosphofructokinase from the extremely thermophilic eubacterium Dictyoglomus thermophilum. J. Bacteriol. 182: 4661–4666.PubMedCrossRefGoogle Scholar
  6. Fukusumi, S., A. Kamizono, S. Horinouchi and T. Beppu. 1988. Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur. J. Biochem. 174: 15–21.PubMedCrossRefGoogle Scholar
  7. Gibbs, M.D., R.A. Reeves and P.L. Bergquist. 1995. Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl. Environ. Microbiol. 61: 4403–4408.PubMedGoogle Scholar
  8. Gibbs, M.D., R.A. Reeves, A. Sunna and P.L. Bergquist. 1999. Sequencing and expression of a beta-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr. Microbiol. 39: 351–0357.PubMedCrossRefGoogle Scholar
  9. Horinouchi, S., S. Fukusumi, T. Ohshima and T. Beppu. 1988. Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur. J. Biochem. 176: 243–253.PubMedCrossRefGoogle Scholar
  10. Janecek, S. 1998. Sequence of archaeal Methanococcus jannaschii alpha-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor? Folia Microbiol. 43: 123–128.CrossRefGoogle Scholar
  11. Jeon, B.S., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi and H. Matsuzawa. 1997. 4-α-Glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis – enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248: 171–178.PubMedCrossRefGoogle Scholar
  12. Kenealy, W.R. and T.W. Jeffries. 2003. Enzyme processes for pulp and paper: a review of recent developments. Wood Deterior. Preserv. 845: 210–239.CrossRefGoogle Scholar
  13. Kobayashi, Y., M. Motoike, S. Fukuzumi, T. Ohshima, T. Saiki and T. Beppu. 1988. Heat-stable amylase complex produced by a strictly anaerobic and extremely thermophilic bacterium, Dictyoglomus ­thermophilum. Agric. Biol. Chem. (Tokyo) 52: 615–616.CrossRefGoogle Scholar
  14. Love, C.A., B.K.C. Patel, W. Ludwig and E. Stackebrandt. 1993. The phylogenetic position of Dictyoglomus thermophilum based on 16S rRNA sequence analysis. FEMS Microbiol. Lett. 107: 317–320.CrossRefGoogle Scholar
  15. Mathrani, I.M. and B.K. Ahring. 1991. Isolation and characterization of a strictly xylan-degrading Dictyoglomus from a man-made, thermophilic anaerobic environment. Arch. Microbiol. 157: 13–17.CrossRefGoogle Scholar
  16. Mathrani, I.M. and B.K. Ahring. 1992. Thermophilic and alkalophilic xylanases from several Dictyoglomus isolates. Appl. Microbiol. Biotechnol. 38: 23–27.CrossRefGoogle Scholar
  17. Morris, D.D., M.D. Gibbs, C.W. Chin, M.H. Koh, K.K. Wong, R.W. Allison, P.J. Nelson and P.L. Bergquist. 1998. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64: 1759–1765.PubMedGoogle Scholar
  18. Nielsen, H.B., Z. Mladenovska and B.K. Ahring. 2007. Bioaugmentation of a two-stage thermophilic (68°C/55°C) anaerobic digestion concept for improvement of the methane yield from cattle manure. Biotechnol. Bioeng. 97: 1638–1643.PubMedCrossRefGoogle Scholar
  19. Patel, B.K.C., H.W. Morgan and R.M. Daniel. 1985a. Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141: 63–69.CrossRefGoogle Scholar
  20. Patel, B.K.C., H.W. Morgan and R.M. Daniel. 1985b. A simple and efficient method for preparing anaerobic media. Biotechnol. Lett. 7: 227–228.CrossRefGoogle Scholar
  21. Patel, B.K.C., H.W. Morgan and R.M. Daniel. 1986. Studies on some thermophilic glycolytic anaerobic bacteria from New Zealand hot springs. Syst. Appl. Microbiol. 8: 128–136.CrossRefGoogle Scholar
  22. Patel, B.K.C., H.W. Morgan, J. Wiegel and R.M. Daniel. 1987. Isolation of an extremely thermophilic chemo-organotrophic anaerobe similar to Dictyoglomus thermophilum from New-Zealand hot springs. Arch. Microbiol. 147: 21–24.CrossRefGoogle Scholar
  23. Patel, B.K.C., J.H. Skerratt and P.D. Nichols. 1991. The phospholipid ester-Linked fatty acid composition of thermophilic bacteria. Syst. Appl. Microbiol. 14: 311–316.CrossRefGoogle Scholar
  24. Plant, A.R., B.K.C. Patel, H.W. Morgan and R.M. Daniel. 1987. Starch degradation by thermophilic anaerobic bacteria. Syst. Appl. Microbiol. 9: 158–162.CrossRefGoogle Scholar
  25. Ratto, M., I.M. Mathrani, B. Ahring and L. Viikari. 1994. Application of thermostable xylanase of Dictyoglomus sp. in enzymic treatment of Kraft Pulps. Appl. Microbiol. Biotechnol. 41: 130–133.CrossRefGoogle Scholar
  26. Saiki, T., Y. Kobayashi, K. Kawagoe and T. Beppu. 1985. Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35: 253–259.CrossRefGoogle Scholar
  27. Sunna, A. and P.L. Bergquist. 2003. A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 7: 63–70.PubMedGoogle Scholar
  28. Svetlichnii, V.A. and T.P. Svetlichnaya. 1988. Dictyoglomus turgidus sp. nov., a new extreme thermophilic eubacterium isolated from hot springs in the Uzon Volcano Crater. Microbiology (En. transl. from Mikrobiologiya) 57: 364–370.Google Scholar
  29. Svetlichnii, V.A. and T.P. Svetlichnaya. 1995. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 55. Int. J. Syst. Bacteriol. 45: 879–880.CrossRefGoogle Scholar
  30. Te’o, V.S., A.E. Cziferszky, P.L. Bergquist and K.M. Nevalainen. 2000. Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol. Lett. 190: 13–19.PubMedCrossRefGoogle Scholar
  31. Adamsen, A.K., J. Lindhagen and B.K. Ahring. 1995. Optimization of extracellular xylanase production by Dictyoglomus sp. B1 in continuous culture. Appl. Microbiol. Biotechnol. 44: 327–332.CrossRefGoogle Scholar
  32. Brock, T.D. and K. Od’ea. 1977. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl. Environ. Microbiol. 33: 254–256.PubMedGoogle Scholar
  33. Ding, Y.H., R.S. Ronimus and H.W. Morgan. 1999. Purification and properties of the pyrophosphate-dependent phosphofructokinase from Dictyoglomus thermophilum Rt46 B.1. Extremophiles 3: 131–137.PubMedCrossRefGoogle Scholar
  34. Ding, Y.H.R., R.S. Ronimus and H.W. Morgan. 2000. Sequencing, cloning, and high-level expression of the pfp gene, encoding a PPi-dependent phosphofructokinase from the extremely thermophilic eubacterium Dictyoglomus thermophilum. J. Bacteriol. 182: 4661–4666.PubMedCrossRefGoogle Scholar
  35. Fukusumi, S., A. Kamizono, S. Horinouchi and T. Beppu. 1988. Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur. J. Biochem. 174: 15–21.PubMedCrossRefGoogle Scholar
  36. Gibbs, M.D., R.A. Reeves and P.L. Bergquist. 1995. Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl. Environ. Microbiol. 61: 4403–4408.PubMedGoogle Scholar
  37. Gibbs, M.D., R.A. Reeves, A. Sunna and P.L. Bergquist. 1999. Sequencing and expression of a beta-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr. Microbiol. 39: 351–0357.PubMedCrossRefGoogle Scholar
  38. Horinouchi, S., S. Fukusumi, T. Ohshima and T. Beppu. 1988. Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur. J. Biochem. 176: 243–253.PubMedCrossRefGoogle Scholar
  39. Janecek, S. 1998. Sequence of archaeal Methanococcus jannaschii alpha-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor? Folia Microbiol. 43: 123–128.CrossRefGoogle Scholar
  40. Jeon, B.S., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi and H. Matsuzawa. 1997. 4-α-Glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis – enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248: 171–178.PubMedCrossRefGoogle Scholar
  41. Kenealy, W.R. and T.W. Jeffries. 2003. Enzyme processes for pulp and paper: a review of recent developments. Wood Deterior. Preserv. 845: 210–239.CrossRefGoogle Scholar
  42. Kobayashi, Y., M. Motoike, S. Fukuzumi, T. Ohshima, T. Saiki and T. Beppu. 1988. Heat-stable amylase complex produced by a strictly anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum. Agric. Biol. Chem. (Tokyo) 52: 615–616.CrossRefGoogle Scholar
  43. Love, C.A., B.K.C. Patel, W. Ludwig and E. Stackebrandt. 1993. The phylogenetic position of Dictyoglomus thermophilum based on 16S rRNA sequence analysis. FEMS Microbiol. Lett. 107: 317–320.CrossRefGoogle Scholar
  44. Mathrani, I.M. and B.K. Ahring. 1991. Isolation and characterization of a strictly xylan-degrading Dictyoglomus from a man-made, thermophilic anaerobic environment. Arch. Microbiol. 157: 13–17.CrossRefGoogle Scholar
  45. Mathrani, I.M. and B.K. Ahring. 1992. Thermophilic and alkalophilic xylanases from several Dictyoglomus isolates. Appl. Microbiol. Biotechnol. 38: 23–27.CrossRefGoogle Scholar
  46. Morris, D.D., M.D. Gibbs, C.W. Chin, M.H. Koh, K.K. Wong, R.W. Allison, P.J. Nelson and P.L. Bergquist. 1998. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64: 1759–1765.PubMedGoogle Scholar
  47. Nielsen, H.B., Z. Mladenovska and B.K. Ahring. 2007. Bioaugmentation of a two-stage thermophilic (68°C/55°C) anaerobic digestion concept for improvement of the methane yield from cattle manure. Biotechnol. Bioeng. 97: 1638–1643.PubMedCrossRefGoogle Scholar
  48. Patel, B.K.C., H.W. Morgan and R.M. Daniel. 1985a. Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141: 63–69.CrossRefGoogle Scholar
  49. Patel, B.K.C., H.W. Morgan and R.M. Daniel. 1985b. A simple and efficient method for preparing anaerobic media. Biotechnol. Lett. 7: 227–228.CrossRefGoogle Scholar
  50. Patel, B.K.C., H.W. Morgan and R.M. Daniel. 1986. Studies on some thermophilic glycolytic anaerobic bacteria from New Zealand hot springs. Syst. Appl. Microbiol. 8: 128–136.CrossRefGoogle Scholar
  51. Patel, B.K.C., H.W. Morgan, J. Wiegel and R.M. Daniel. 1987. Isolation of an extremely thermophilic chemo-organotrophic anaerobe similar to Dictyoglomus thermophilum from New-Zealand hot springs. Arch. Microbiol. 147: 21–24.CrossRefGoogle Scholar
  52. Patel, B.K.C., J.H. Skerratt and P.D. Nichols. 1991. The phospholipid ester-Linked fatty acid composition of thermophilic bacteria. Syst. Appl. Microbiol. 14: 311–316.CrossRefGoogle Scholar
  53. Plant, A.R., B.K.C. Patel, H.W. Morgan and R.M. Daniel. 1987. Starch degradation by thermophilic anaerobic bacteria. Syst. Appl. Microbiol. 9: 158–162.CrossRefGoogle Scholar
  54. Ratto, M., I.M. Mathrani, B. Ahring and L. Viikari. 1994. Application of thermostable xylanase of Dictyoglomus sp. in enzymic treatment of Kraft Pulps. Appl. Microbiol. Biotechnol. 41: 130–133.CrossRefGoogle Scholar
  55. Saiki, T., Y. Kobayashi, K. Kawagoe and T. Beppu. 1985. Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35: 253–259.CrossRefGoogle Scholar
  56. Sunna, A. and P.L. Bergquist. 2003. A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 7: 63–70.PubMedGoogle Scholar
  57. Svetlichnii, V.A. and T.P. Svetlichnaya. 1988. Dictyoglomus turgidus sp. nov., a new extreme thermophilic eubacterium isolated from hot springs in the Uzon Volcano Crater. Microbiology (En. transl. from Mikrobiologiya) 57: 364–370.Google Scholar
  58. Svetlichnii, V.A. and T.P. Svetlichnaya. 1995. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 55. Int. J. Syst. Bacteriol. 45: 879–880.CrossRefGoogle Scholar
  59. Te’o, V.S., A.E. Cziferszky, P.L. Bergquist and K.M. Nevalainen. 2000. Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol. Lett. 190: 13–19.PubMedCrossRefGoogle Scholar

Copyright information

© Bergey’s Manual Trust 2010

Authors and Affiliations

  1. 1.Microbial Discovery Research Unit, School of Biomolecular and Physical SciencesGriffith UniversityBrisbaneAustralia

Personalised recommendations