Advertisement

Phylum XVII. Acidobacteria phyl. nov.

  • J. Cameron Thrash
  • John D. Coates

Abstract

The phylum currently contains two classes, three orders, three families, and six described genera. The phylum is identified on the basis of phylogenetic analysis of 16S rRNA gene sequences (Figure 117).

Keywords

Type Strain Acid Mine Drainage Major Fatty Acid Maintenance Procedure Peritrichous Flagellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barns, S.M., S.L. Takala and C.R. Kuske. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the envrionment. Appl. Environ. Microbiol. 65: 1731–1737.PubMedGoogle Scholar
  2. Barns, S.M., E.C. Cain, L. Sommerville and C.R. Kuske. 2007. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl. Environ. Microbiol. 73: 3113–3116.PubMedCrossRefGoogle Scholar
  3. Huelsenbeck, J.P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.PubMedCrossRefGoogle Scholar
  4. Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.PubMedGoogle Scholar
  5. Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391–2396.PubMedCrossRefGoogle Scholar
  6. Joseph, S.J., P. Hugenholtz, P. Sangwan, C.A. Osborne and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69: 7210–7215.PubMedCrossRefGoogle Scholar
  7. Kuske, C.R., S.M. Barns and J.D. Busch. 1997. Diverse uncultivated ­bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. ­Microbiol. 63: 3614–3621.PubMedGoogle Scholar
  8. Ludwig, W., S.H. Bauer, M. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann and K.H. Schleifer. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153: 181–190.PubMedCrossRefGoogle Scholar
  9. McCaig, A.E., S.J. Grayston, J.I. Prosser and L.A. Glover. 2001. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol. Ecol. 35: 37–48.PubMedCrossRefGoogle Scholar
  10. Meisinger, D.B., J. Zimmermann, W. Ludwig, K.-H. Schleifer, G. ­Wanner, M. Schmid, P.C. Bennett, A.S. Engel and N.M. Lee. 2007. In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ. Microbiol. 9: 1523–1534.PubMedCrossRefGoogle Scholar
  11. Quaiser, A., T. Ochsenreiter, C. Lanz, S.C. Schuster, A.H. Treusch, J. Eck and C. Schleper. 2003. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol. Microbiol. 50: 563–575.PubMedCrossRefGoogle Scholar
  12. Ronquist, F. and J.P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  13. Sait, M., P. Hugenholtz and P.H. Janssen. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4: 654–666.PubMedCrossRefGoogle Scholar
  14. Sait, M., K.E.R. Davis and P.H. Janssen. 2006. Effect of pH on ­isolation and distribution of members of subdivision 1 of the ­phylum ­Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 1852–1857.PubMedCrossRefGoogle Scholar
  15. Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748–4755.PubMedCrossRefGoogle Scholar
  16. Zimmermann, J., J.M. Gonzalez and C. Saiz-Jimenez. 2005. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analysis. Geomicrobiol. J. 22: 379–388.CrossRefGoogle Scholar
  17. Cavalier-Smith, T. 2002. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52: 7–76.PubMedGoogle Scholar
  18. Cavalier-Smith, T. 2002. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial ­megaclassification. Int. J. Syst. Evol. Microbiol. 52: 7–76.PubMedGoogle Scholar
  19. Kishimoto, N., K. Inagaki, T. Sugio and T. Tano. 1991a. In Validation of the publication of new names and combinations previously effectively published outside the IJSB. List no. 38. Int. J. Syst. Bacteriol. 41: 456–457.CrossRefGoogle Scholar
  20. Kishimoto, N., Y. Kosako and T. Tano. 1991b. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr. Microbiol. 22: 1–7.CrossRefGoogle Scholar
  21. Eichorst, S.A., J.A. Breznak and T.M. Schmidt. 2007a. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73: 2708–2717.PubMedCrossRefGoogle Scholar
  22. Eichorst, S.A., J.A. Breznak and T.M. Schmidt. 2007b. In Validation of the publication of new names and combinations previously effectively published outside the IJSEM. List no. 117. Int. J. Syst. Evol. Microbiol. 57: 1933–1934.CrossRefGoogle Scholar
  23. Inagaki, K., K. Nakahira, K. Mukai, T. Tamura and H. Tanaka. 1998. Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci. Biotechnol. Biochem. 62: 1061–1067.PubMedCrossRefGoogle Scholar
  24. Inagaki, K., N. Ueno, T. Tamura and H. Tanaka. 2001. Purification and characterization of an acid trehalase from Acidobacterium capsulatum. J. Biosci. Bioeng. 91: 141–146.PubMedGoogle Scholar
  25. Kishimoto, N. and T. Tano. 1987. Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J. Gen. Appl. Microbiol. 33: 11–25.CrossRefGoogle Scholar
  26. Kishimoto, N., K. Inagaki, T. Sugio and T. Tano. 1991a. Purification and properties of an acidic β-glucosidase from Acidobacterium capsulatum. J. Ferment. Bioeng. 71: 318–321.CrossRefGoogle Scholar
  27. Kishimoto, N., K. Inagaki, T. Sugio and T. Tano. 1991b. In Validation of the publication of new names and combinations previously effectively published outside the IJSB. List no. 38. Int. J. Syst. Bacteriol. 41: 456–457.CrossRefGoogle Scholar
  28. Kishimoto, N., Y. Kosako and T. Tano. 1991c. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr. Microbiol. 22: 1–7.CrossRefGoogle Scholar
  29. Koch, I.H., F. Gich, P.F. Dunfield and J. Overmann. 2008. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int. J. Syst. Evol. Microbiol. 58: 1114–1122.PubMedCrossRefGoogle Scholar
  30. Sait, M., K.E.R. Davis and P.H. Janssen. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 1852–1857.PubMedCrossRefGoogle Scholar
  31. Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int. J. Syst. Evol. Microbiol. 58  : 2597–2601.PubMedCrossRefGoogle Scholar
  32. Hugenholtz, P., C. Pitulle, K.L. Hershberger and N.R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring.J. ­Bacteriol. 180: 366–376.PubMedGoogle Scholar
  33. Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int. J. Syst. Evol. Microbiol. 58: 2597–2601.PubMedCrossRefGoogle Scholar
  34. Liesack, W., F. Bak, J.U. Kreft and E. Stackebrandt. 1994. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch. Microbiol. 162: 85–90.PubMedGoogle Scholar
  35. Liesack, W., F. Bak, J.U. Kreft and E. Stackebrandt. 1995. In Validation of the publication of new names and combinations previously effectively published outside the IJSB. List no. 52. Int. J. Syst. Bacteriol. 45: 197–198.CrossRefGoogle Scholar
  36. Bak, F., K. Finster and F. Rothfuß. 1992. Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol. 157: 529–534.Google Scholar
  37. Coates, J.D., D.J. Ellis, C.V. Gaw and D.R. Lovley. 1999. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol. 49: 1615–1622.PubMedCrossRefGoogle Scholar
  38. Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int. J. Syst. Evol. Microbiol. 58: 2597–2601.PubMedCrossRefGoogle Scholar
  39. Liesack, W., F. Bak, J.U. Kreft and E. Stackebrandt. 1994. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch. Microbiol. 162: 85–90.PubMedGoogle Scholar
  40. Liesack, W., F. Bak, J. U. Kreft and E. Stackebrandt. 1995. In Validation of the publication of new names and combinations previously effectively published outside the IJSB. List no. 52. Int. J. Syst. Bacteriol. 45: 197–198.CrossRefGoogle Scholar
  41. Nevin, K.P. and D.R. Lovley. 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix ­fermentans. Appl. Environ. Microbiol. 68: 2294–2299.PubMedCrossRefGoogle Scholar
  42. Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int. J. Syst. Evol. Microbiol. 58: 2597–2601.PubMedCrossRefGoogle Scholar
  43. Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int. J. Syst. Evol. Microbiol. 58: 2597–2601.PubMedCrossRefGoogle Scholar

Copyright information

© Bergey’s Manual Trust 2010

Authors and Affiliations

  1. 1.Department of MicrobiologyOregon State UniversityCorvallisUSA

Personalised recommendations