Advertisement

Phylum XXIV. Chlamydiae Garrity and Holt 2001

  • Cho-Chou Kuo
  • Richard S. Stephens

Abstract

The phylum Chlamydiae is based on phylogenetic analysis of 16S rRNA sequences, clearly separating its members (showing 380% 16S rRNA sequence similarity with each other) from all other Bacteria by a long, deep branch in phylogenetic trees (Figure 154). All known members of this phylum are nonmotile, obligate intracellular bacteria and multiply in eukaryotic hosts (animals including humans, or protozoa). Unlike most other bacteria, they show a developmental cycle characterized by morphologically and physiologically distinct stages. All chlamydiae characterized so far possess small genomes (1–2.4 Mb); they are metabolically impaired and need to import essential building blocks like nucleotides, amino acids, and cofactors from their host cells.

Keywords

Chlamydia Trachomatis Developmental Cycle Elementary Body Obligate Intracellular Bacterium Chlamydial Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52: 297–354.PubMedGoogle Scholar
  2. Garrity, G.M. and J.G. Holt. 2001. The Road Map to the Manual. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria (edited by Boone, Castenholz and Garrity). Springer, New York, pp. 119–166.Google Scholar
  3. Griffiths, E., A.K. Petrich and R.S. Gupta. 2005. Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology 151: 2647–2657.PubMedGoogle Scholar
  4. Griffiths, E., M.S. Ventresca and R.S. Gupta. 2006. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 7: 14.PubMedGoogle Scholar
  5. Griffiths, E. and R.S. Gupta. 2007. Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology153: 2648–2654.PubMedGoogle Scholar
  6. Guindon, S., F. Lethiec, P. Duroux and O. Gascuel. 2005. PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33: W557–W559.PubMedGoogle Scholar
  7. Gupta, R.S. and E. Griffiths. 2006. Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol. 14: 527–535.PubMedGoogle Scholar
  8. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. ­Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.PubMedGoogle Scholar
  9. Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.PubMedGoogle Scholar
  10. Storz, J. and L.A. Page. 1971. Taxonomy of the chlamydiae: reasons for classifying organisms of the genus Chlamydia, family Chlamydiaceae, in a separate order Chlamydiales ord. nov. Int. J. Syst. Bacteriol.21: 332–334.Google Scholar
  11. Strous, M., E. Pelletier, S. Mangenot, T. Rattei, A. Lehner, M.W. ­Taylor, M. Horn, H. Daims, D. Bartol-Mavel, P. Wincker, V. Barbe, N. Fonknechten, D. Vallenet, B. Segurens, C. Schenowitz-Truong, C. Medigue, A. Collingro, B. Snel, B.E. Dutilh, H.J. Op den Camp, C. van der Drift, I. Cirpus, K.T. van de Pas-Schoonen, H.R. Harhangi, L. van Niftrik, M. Schmid, J. Keltjens, J. van de Vossenberg, B. Kartal, H. Meier, D. Frishman, M.A. Huynen, H.W. Mewes, J. Weissenbach, M.S. Jetten, M. Wagner and D. Le Paslier. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440: 790–794.PubMedGoogle Scholar
  12. Wagner, M. and M. Horn. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241–249.PubMedGoogle Scholar
  13. Storz, J. and L.A. Page. 1971. Taxonomy of the chlamydiae: reasons for classifying organisms of the genus Chlamydia, family Chlamydiaceae, in a separate order Chlamydiales ord. nov. Int. J. Syst. Bacteriol.21: 332–334.Google Scholar
  14. Bavoil, P.M. and P.B. Wyrick. 2006. Chlamydia: genomics and pathogenesis. Horizon Bioscience, Norwich, UK.Google Scholar
  15. Corsaro, D., M. Valassina and D. Venditti. 2003. Increasing diversity within Chlamydiae. Crit. Rev. Microbiol. 29: 37–78.PubMedGoogle Scholar
  16. Draghi, A., 2nd, V.L. Popov, M.M. Kahl, J.B. Stanton, C.C. Brown, G.J. Tsongalis, A.B. West and S. Frasca, Jr. 2004. Characterization of “Candidatus piscichlamydia salmonis” (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in farmed ­Atlantic salmon (Salmo salar). J. Clin. Microbiol. 42: 5286–5297.PubMedGoogle Scholar
  17. Everett, K.D.E., R.M. Bush and A.A. Andersen. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 49: 415–440.PubMedGoogle Scholar
  18. Horn, M. and M. Wagner. 2001. Evidence for additional genus-level diversity of Chlamydiales in the environment. FEMS Microbiol. Lett. 204: 71–74.PubMedGoogle Scholar
  19. Jones, H., G. Rake and B. Stearns. 1945. Studies on lymphogranuloma venereum. III. The action of the sulfonamides on the agent of lymphogranuloma venereum. J. Infect. Dis. 76: 55–69.Google Scholar
  20. Kalayoglu, M.V. and G.I. Byrne. 2006. The genus Chlamydia - medical. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York, pp. 741–754.Google Scholar
  21. Karlsen, M., A. Nylund, K. Watanabe, J.V. Helvik, S. Nylund and H. Plarre. 2008. Characterization of ‘Candidatus Clavochlamydia ­salmonicola’: an intracellular bacterium infecting salmonid fish. Environ. Microbiol. 10: 208–218.PubMedGoogle Scholar
  22. Kostanjsek, R., J. Strus, D. Drobne and G. Avgustin. 2004. ‘Candidatus Rhabdochlamydia porcellionis’, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int. J. Syst. Evol. Microbiol. 54: 543–549.PubMedGoogle Scholar
  23. Loy, A., F. Maixner, M. Wagner and M. Horn. 2007. probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 35: D800–D804.PubMedGoogle Scholar
  24. Ossewaarde, J.M. and A. Meijer. 1999. Molecular evidence for the existence of additional members of the order Chlamydiales. Microbiology 145: 411–417.PubMedGoogle Scholar
  25. Poppert, S., A. Essig, R. Marre, M. Wagner and M. Horn. 2002. Detection and differentiation of chlamydiae by fluorescence in situ hybridization. Appl. Environ. Microbiol. 68: 4081–4089.PubMedGoogle Scholar
  26. Rurangirwa, F.R., P.M. Dilbeck, T.B. Crawford, T.C. McGuire and T.F. McElwain. 1999. Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int. J. Syst. Bacteriol. 49: 577–581.PubMedGoogle Scholar
  27. Storz, J. and L.A. Page. 1971. Taxonomy of the chlamydiae: reasons for classifying organisms of the genus Chlamydia, family Chlamydiaceae, in a separate order Chlamydiales ord. nov. Int. J. Syst. Bacteriol. 21: 332–334.Google Scholar
  28. Thomas, V., N. Casson and G. Greub. 2006. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ. Microbiol. 8: 2125–2135.PubMedGoogle Scholar
  29. Alexander, J.J. 1968. Separation of protein synthesis in meningopneumonitisgent from that in L cells by differential susceptibility to cycloheximide. J. Bacteriol. 95: 327–332.PubMedGoogle Scholar
  30. Allan, I. and J.H. Pearce. 1983a. Differential amino acid utilization by Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and its regulatory effect on chlamydial growth. J. Gen. Microbiol. 129: 1991–2000.PubMedGoogle Scholar
  31. Allan, I. and J.H. Pearce. 1983b. Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. J. Gen. Microbiol. 129  : 2001–2007.PubMedGoogle Scholar
  32. Amann, R., N. Springer, W. Schonhuber, W. Ludwig, E.N. Schmid, K.D. Muller and R. Michel. 1997. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl. Environ. Microbiol. 63: 115–121.PubMedGoogle Scholar
  33. Andersen, A.A. 1991. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J. Clin. Microbiol. 29: 707–711.PubMedGoogle Scholar
  34. Andersen, A.A. 1997. Two new serovars of Chlamydia psittaci from North American birds. J. Vet. Diagn. Invest. 9: 159–164.PubMedGoogle Scholar
  35. Barbour, A.G., K. Amano, T. Hackstadt, L. Perry and H.D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151: 420–428.PubMedGoogle Scholar
  36. Batteiger, B.E., W.J.t. Newhall and R.B. Jones. 1985. Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis. Infect. Immun. 50: 488–494.PubMedGoogle Scholar
  37. Bavoil, P., A. Ohlin and J. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44: 479–485.PubMedGoogle Scholar
  38. Bavoil, P., R.S. Stephens and S. Falkow. 1990. A soluble 60 kiloDalton antigen of Chlamydia spp. is a homologue of Escherichia coli GroEL. Mol. Microbiol. 4: 461–469.PubMedGoogle Scholar
  39. Bavoil, P.M. and R.C. Hsia. 1998. Type III secretion in Chlamydia: a case of deja vu? Mol. Microbiol. 28: 860–862.PubMedGoogle Scholar
  40. Beatty, W.L., T.A. Belanger, A.A. Desai, R.P. Morrison and G.I. Byrne. 1994. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect. Immun. 62: 3705–3711.PubMedGoogle Scholar
  41. Becovier, H., H.H. Mollaret, J.M. Alonso, J. Brault, G.R. Fanning, A.G. Steigerwalt and D.J. Brenner. 1980. Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr. Microbiol. 4: 225–229.Google Scholar
  42. Bodetti, T.J., E. Jacobson, C. Wan, L. Hafner, A. Pospischil, K. Rose and P. Timms. 2002. Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst. Appl. Microbiol. 25: 146–152.PubMedGoogle Scholar
  43. Brade, L., S. Schramek, U. Schade and H. Brade. 1986. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect. Immun. 54: 568–574.PubMedGoogle Scholar
  44. Busacca, A. 1935. Un germe caractères de rickettsies (Rickettsia trachomæ) dans tissues trachomateux. Arch. Ophthalmol. 52: 567–572.Google Scholar
  45. Cajaraville, M.P. and E. Angulo. 1991. Chlamydia-like organisms in digestive and duct cells of mussels from the Basque coast. J. Invertebr. Pathol. 58: 381–386.PubMedGoogle Scholar
  46. Caldwell, H.D., J. Kromhout and J. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31: 1161–1176.PubMedGoogle Scholar
  47. Campbell, L.A., C.C. Kuo, S.P. Wang and J.T. Grayston. 1990. Serological response to Chlamydia pneumoniae infection. J. Clin. Microbiol. 28: 1261–1264.PubMedGoogle Scholar
  48. Campbell, L.A., D.L. Patton, D.E. Moore, A.L. Cappuccio, B.A. Mueller and S.P. Wang. 1993. Detection of Chlamydia trachomatis deoxyribonucleic acid in women with tubal infertility. Fertil Steril. 59: 45–50.PubMedGoogle Scholar
  49. Chi, E.Y., C.C. Kuo and J.T. Grayston. 1987. Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR. J. Bacteriol. 169: 3757–3763.PubMedGoogle Scholar
  50. Chosewood, L.C. and D.E. Wilson 2007. Biosafety in Microbiological and Biomedical Laboratories, 5th edn, U.S. Department of Health and Human Services, Public Health Service Centers for Disease Control and Prevention and National Institutes of Health. U.S. Government Printing Office, Washington, D.C.Google Scholar
  51. Clifton, D.R., C.A. Dooley, S.S. Grieshaber, R.A. Carabeo, K.A. Fields and T. Hackstadt. 2005. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Infect. Immun. 73: 3860–3868.PubMedGoogle Scholar
  52. Collingro, A., S. Poppert, E. Heinz, S. Schmitz-Esser, A. Essig, M. Schweikert, M. Wagner and M. Horn. 2005a. Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. Microbiology 151: 301–309.PubMedGoogle Scholar
  53. Collingro, A., E.R. Toenshoff, M.W. Taylor, T.R. Fritsche, M. Wagner and M. Horn. 2005b. ‘Candidatus Protochlamydia amoebophila’, an endosymbiont of Acanthamoeba spp. Int. J. Syst. Evol. Microbiol. 55: 1863–1866.PubMedGoogle Scholar
  54. Corsaro, D., D. Venditti and M. Valassina. 2002. New parachlamydial 16S rDNA phylotypes detected in human clinical samples. Res. Microbiol. 153: 563–567.PubMedGoogle Scholar
  55. Cox, R.L., C.-C. Kuo, J.T. Grayston and L.A. Campbell. 1988. Deoxyribonucleic acid relatedness of Chlamydia sp. strain TWAR to Chlamydia trachomatis and Chlamydia psitaci. Int. J. Syst. Bacteriol. 38: 265–267.Google Scholar
  56. Davis, C.H., J.E. Raulston and P.B. Wyrick. 2002. Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect. Immun. 70: 3413–3418.PubMedGoogle Scholar
  57. DeGraves, F.J., D. Gao and B. Kaltenboeck. 2003. High-sensitivity quantitative PCR platform. BioTechniques 34: 106–110, 112–105.Google Scholar
  58. Dilbeck, P.M., J.F. Evermann, T.B. Crawford, A.C. Ward, C.W. Leathers, C.J. Holland, C.A. Mebus, L.L. Logan, F.R. Rurangirwa and T.C. McGuire. 1990. Isolation of a previously undescribed rickettsia from an aborted bovine fetus. J. Clin. Microbiol. 28: 814–816.PubMedGoogle Scholar
  59. Draghi, A., 2nd, V.L. Popov, M.M. Kahl, J.B. Stanton, C.C. Brown, G.J. Tsongalis, A.B. West and S. Frasca, Jr. 2004. Characterization of “Candidatus Piscichlamydia salmonis” (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J. Clin. Microbiol. 42: 5286–5297.PubMedGoogle Scholar
  60. Dugan, J., D.D. Rockey, L. Jones and A.A. Andersen. 2004. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob. Agents Chemother. 48: 3989–3995.PubMedGoogle Scholar
  61. Everett, K.D.E., R.M. Bush and A.A. Andersen. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 49: 415–440.PubMedGoogle Scholar
  62. Everson, J.S., S.A. Garner, B. Fane, B.L. Liu, P.R. Lambden and I.N. Clarke. 2002. Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bacterium Chlamydophila abortus. J. Bacteriol. 184: 2748–2754.PubMedGoogle Scholar
  63. Fan, J. and R.S. Stephens. 1997. Antigen conformation dependence of Chlamydia trachomatis infectivity neutralization. J. Infect. Dis. 176: 713–721.PubMedGoogle Scholar
  64. Fehlner-Gardiner, C., C. Roshick, J.H. Carlson, S. Hughes, R.J. Belland, H.D. Caldwell and G. McClarty. 2002. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J. Biol. Chem. 277: 26893–26903.PubMedGoogle Scholar
  65. Fukushi, H. and K. Hirai. 1992. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int. J. Syst. Bacteriol. 42: 306–308.PubMedGoogle Scholar
  66. Furness, G., D.M. Graham and P. Reeve. 1960. The titration of trachoma and inclusion blennorrhoea viruses in cell cultures. J. Gen. Microbiol. 23: 613–619.PubMedGoogle Scholar
  67. Garner, S.A., J.S. Everson, P.R. Lambden, B.A. Fane and I.N. Clarke. 2004. Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum. Virus Genes 28: 207–214.PubMedGoogle Scholar
  68. Gerloff, R.K., D.B. Ritter and R.O. Watson. 1970. Studies on thermal denaturation of DNA from various chlamydiae. J. Infect. Dis. 121: 65–69.PubMedGoogle Scholar
  69. Gordon, F.B., V.W. Andrew and J.C. Wagner. 1957. Development of resistance to penicillin and to chlortetracycline in psittacosis virus. Virology 4: 156–171.PubMedGoogle Scholar
  70. Gordon, F.B. and A.L. Quan. 1965. Occurence of glycogen in inclusions of the psittacosis-lymphogranuloma venereum-trachoma agents.J. Infect. Dis. 115: 186–196.PubMedGoogle Scholar
  71. Gordon, F.B., I.A. Harper, A.L. Quan, J.D. Treharne, R.S. Dwyer and J.A. Garland. 1969. Detection of Chlamydia (Bedsonia) in certain infections of man. I. Laboratory procedures: comparison of yolk sac and cell culture for detection and isolation. J. Infect. Dis. 120: 451–462.PubMedGoogle Scholar
  72. Grayston, J.T. and S. Wang. 1975. New knowledge of chlamydiae and the diseases they cause. J. Infect. Dis. 132: 87–105.PubMedGoogle Scholar
  73. Grayston, J.T., S.P. Wang, L.J. Yeh and C.C. Kuo. 1985. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis.7: 717–725.PubMedGoogle Scholar
  74. Grayston, J.T., C.C. Kuo, L.A. Campbell and S.P. Wang. 1989. Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain twar. Int. J. Syst. Bacteriol. 39: 88–90.Google Scholar
  75. Greub, G. and D. Raoult. 2003. History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago. Appl. Environ. Microbiol. 69: 5530–5535.PubMedGoogle Scholar
  76. Grimwood, J., L. Olinger and R.S. Stephens. 2001. Expression of Chlamydia pneumoniae polymorphic membrane protein family genes. Infect. Immun. 69: 2383–2389.PubMedGoogle Scholar
  77. Hackstadt, T., W. Baehr and Y. Ying. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl. Acad. Sci. U. S. A. 88: 3937–3941.PubMedGoogle Scholar
  78. Harshbarger, J.C. and S.C. Chang. 1977. Chlamydiae (with phages), mycoplasmas, and richettsiae in Chesapeake Bay bivalves. Science 196: 666–668.PubMedGoogle Scholar
  79. Hatch, T.P., E. Al-Hossainy and J.A. Silverman. 1982. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150: 662–670.PubMedGoogle Scholar
  80. Hatch, T.P., M. Miceli and J.E. Sublett. 1986. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379–385.PubMedGoogle Scholar
  81. Herring, A.J., I.E. Anderson, M. McClenaghan, N.F. Inglis, H. Williams, B.A. Matheson, C.P. West, M. Rodger and P.P. Brettle. 1987. Restriction endonuclease analysis of DNA from two isolates of Chlamydia psittaci obtained from human abortions. Br. Med. J. (Clin. Res. Ed.) 295: 1239.Google Scholar
  82. Hoelzle, L.E., G. Steinhausen and M.M. Wittenbrink. 2000. PCR-based detection of chlamydial infection in swine and subsequent PCR-coupled genotyping of chlamydial omp1-gene amplicons by DNA-hybridization, RFLP-analysis, and nucleotide sequence analysis. Epidemiol. Infect. 125: 427–439.PubMedGoogle Scholar
  83. Homer, B.L., E.R. Jacobson, J. Schumacher and G. Scherba. 1994. Chlamydiosis in mariculture-reared green sea turtles (Chelonia mydas). Vet. Pathol. 31: 1–7.PubMedGoogle Scholar
  84. How, S.J., D. Hobson, C.A. Hart and R.E. Webster. 1985. An in-vitro investigation of synergy and antagonism between antimicrobials against Chlamydia trachomatis. J. Antimicrob. Chemother. 15: 533–538.PubMedGoogle Scholar
  85. Hsia, R.C., Y. Pannekoek, E. Ingerowski and P.M. Bavoil. 1997. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 25: 351–359.PubMedGoogle Scholar
  86. Hsia, R.C., L.M. Ting and P.M. Bavoil. 2000. Microvirus of chlamydia psittaci strain guinea pig inclusion conjunctivitis: isolation and molecular characterization. Microbiology 146: 1651–1660.PubMedGoogle Scholar
  87. Hybiske, K. and R.S. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. U. S. A. 104: 11430–11435.PubMedGoogle Scholar
  88. Iliffe-Lee, E.R. and G. McClarty. 1999. Glucose metabolism in Chlamydia trachomatis: the ‘energy parasite’ hypothesis revisited. Mol. Microbiol. 33: 177–187.PubMedGoogle Scholar
  89. Johnson, F.W., B.A. Matheson, H. Williams, A.G. Laing, V. Jandial, R. Davidson-Lamb, G.J. Halliday, D. Hobson, S.Y. Wong, K.M. Hadley and et al. 1985. Abortion due to infection with Chlamydia psittaci in a sheep farmer’s wife. Br. Med. J. (Clin. Res. Ed.) 290: 592–594.Google Scholar
  90. Jones, H., G. Rake and B. Stearns. 1945. Studies on lymphogranuloma venereum. III. The action of the sulfonamides on the agent of lymphogranuloma venereum. J. Infect. Dis. 76: 55–69.Google Scholar
  91. Joseph, T., F.E. Nano, C.F. Garon and H.D. Caldwell. 1986. Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids. Infect. Immun. 51: 699–703.PubMedGoogle Scholar
  92. Judicial Commission. 1985. Opinion 60. Rejection of the name Yersinia pseudotuberculosis subsp. pestis (van Loghem) Bechovier et al. 1991 and conservation of the name Yersinia pestis (Lehman and Neumann) van Loghem 1944 for the plague bacillus. Int. J. Syst. Bacteriol. 35: 540–541.Google Scholar
  93. Kahane, S., E. Metzer and M.G. Friedman. 1995. Evidence that the novel microorganism ‘Z’ may belong to a new genus in the family Chlamydiaceae. FEMS Microbiol. Lett. 126: 203–207.Google Scholar
  94. Kalman, S., W. Mitchell, R. Marathe, C. Lammel, J. Fan, R.W. Hyman, L. Olinger, J. Grimwood, R.W. Davis and R.S. Stephens. 1999. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21: 385–389.PubMedGoogle Scholar
  95. Kaltenboeck, B., K.G. Kousoulas and J. Storz. 1993. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J. Bacteriol. 175: 487–502.PubMedGoogle Scholar
  96. Kaltenboeck, B., N. Schmeer and R. Schneider. 1997. Evidence for numerous omp1 alleles of porcine Chlamydia trachomatis and novel chlamydial species obtained by PCR. J. Clin. Microbiol. 35: 1835–1841.Google Scholar
  97. Kane, C.D., R.M. Vena, S.P. Ouellette and G.I. Byrne. 1999. Intracellular tryptophan pool sizes may account for differences in gamma interferon-mediated inhibition and persistence of chlamydial growth in polarized and nonpolarized cells. Infect. Immun. 67: 1666–1671.PubMedGoogle Scholar
  98. Kingsbury, D.T. and E. Weiss. 1968. Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J. Bacteriol. 96: 1421–1423.PubMedGoogle Scholar
  99. Koelbl, O. 1969. Untersuchungen uebe das Vorkommen von Miyagawanellen beim Schwein. Wien Tierarztl Mschr 56: 332–335.Google Scholar
  100. Koelbl, O., H. Burtscher and J Hebensreit. 1970. Polyarthritis bei Schlachtschweinen. Mikrobiologische, histologische und fleischhygienische Aspekte. Wien Tierarztl. Mschr 57: 355–361.Google Scholar
  101. Kubo, A. and R.S. Stephens. 2000. Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target. Mol. Microbiol. 38: 772–780.PubMedGoogle Scholar
  102. Kuo, C.-C., S.-P. Wang and J.T. Grayston. 1977a. Growth of trachoma organisms in HeLa 229 cell culture. In Nongonococal Urethritis and Related Infection (edited by Hobson and Holmes). American Society for Microbiology, Washington, D.C., pp. 328–336.Google Scholar
  103. Kuo, C.-C., H.-H. Chen, S.-P. Wang and J.T. Grayston. 1986. Identification of a new group of Chlamydia psittaci strains called TWAR. J. Clin. Microbiol. 24: 1034–1037.PubMedGoogle Scholar
  104. Kuo, C., S. Wang and J.T. Grayston. 1972a. Differentiation of TRIC and LGV organisms based on enhancement of infectivity by DEAE-­dextran in cell culture. J. Infect. Dis. 125: 313–317.PubMedGoogle Scholar
  105. Kuo, C., S. Wang, B.B. Wentworth and J.T. Grayston. 1972b. Primary isolation of TRIC organisms in HeLa 229 cells treated with DEAE-dextran. J. Infect. Dis. 125: 665–668.PubMedGoogle Scholar
  106. Kuo, C., N. Takahashi, A.F. Swanson, Y. Ozeki and S. Hakomori. 1996. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells.J. Clin. Invest 98: 2813–2818.PubMedGoogle Scholar
  107. Kuo, C.C., S.P. Wang and J.T. Grayston. 1973. Effect of polycations, polyanions and neuraminidase on the infectivity of trachoma-inclusin conjunctivitis and lymphogranuloma venereum organisms HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunction. Infect. Immun. 8: 74–79.PubMedGoogle Scholar
  108. Kuo, C.C. and T. Grayston. 1976. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect. Immun. 13: 1103–1109.PubMedGoogle Scholar
  109. Kuo, C.C., S.P. Wang and J.T. Grayston. 1977b. Antimicrobial activity of several antibiotics and a sulfonamide against Chlamydia trachomatis organisms in cell culture. Antimicrob. Agents Chemother. 12: 80–83.PubMedGoogle Scholar
  110. Kuo, C.C. and E.Y. Chi. 1987. Ultrastructural study of Chlamydia trachomatis surface antigens by immunogold staining with monoclonal antibodies. Infect. Immun. 55: 1324–1328.PubMedGoogle Scholar
  111. Kuo, C.C. and J.T. Grayston. 1988. In vitro drug susceptibility of Chlamydia sp. strain TWAR. Antimicrob. Agents Chemother. 32: 257–258.PubMedGoogle Scholar
  112. Kuo, C.C. and J.T. Grayston. 1990a. Amino acid requirements for growth of Chlamydia pneumoniae in cell cultures: growth enhancement by lysine or methionine depletion. J. Clin. Microbiol. 28: 1098–1100.PubMedGoogle Scholar
  113. Kuo, C.C. and J.T. Grayston. 1990b. A sensitive cell line, HL cells, for isolation and propagation of Chlamydia pneumoniae strain TWAR. J. Infect. Dis. 162: 755–758.Google Scholar
  114. Kuo, C.C., A. Shor, L.A. Campbell, H. Fukushi, D.L. Patton and J.T. Grayston. 1993. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J. Infect. Dis. 167: 841–849.PubMedGoogle Scholar
  115. Kuo, C.C., M. Puolakkainen, T.M. Lin, M. Witte and L.A. Campbell. 2002. Mannose-receptor positive and negative mouse macrophages differ in their susceptibility to infection by Chlamydia species. Microb. Pathog. 32: 43–48.PubMedGoogle Scholar
  116. Li, D., A. Vaglenov, T. Kim, C. Wang, D. Gao and B. Kaltenboeck. 2005. High-yield culture and purification of Chlamydiaceae bacteria.J. Microbiol. Methods 61: 17–24.PubMedGoogle Scholar
  117. Lillie, R.D. 1930. Psittacosis-rickettsia-like inclusions in man and in experimental animals. Pub. Health Rep 45: 773–778.Google Scholar
  118. Lin, H.S. and J.W. Moulder. 1966. Patterns of response to sulfadiazine, d-cycloserine and d-alanine in members of the psittacosis group.J. Infect. Dis. 116: 372–376.PubMedGoogle Scholar
  119. Liu, B.L., J.S. Everson, B. Fane, P. Giannikopoulou, E. Vretou, P.R. Lambden and I.N. Clarke. 2000. Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J. Virol. 74: 3464–3469.PubMedGoogle Scholar
  120. Majeed, M. and E. Kihlstrom. 1991. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells. Infect. Immun. 59: 4465–4472.PubMedGoogle Scholar
  121. Matsumoto, A. 1981. Electron microscopic observations of surface projections and related intracellular structures of Chlamydia organisms. J. Electron Microsc. (Tokyo) 30: 315–320.Google Scholar
  122. Matsumoto, A. 1982. Surface projections of Chlamydia psittaci elementary bodies as revealed by freeze-deep-etching. J. Bacteriol. 151: 1040–1042.PubMedGoogle Scholar
  123. Matsumoto, A., H. Izutsu, N. Miyashita and M. Ohuchi. 1998. Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J. Clin. Microbiol. 36: 3013–3019.PubMedGoogle Scholar
  124. Miyashita, N., A. Matsumoto, R. Soejima, T. Kishimoto, M. Nakajima, Y. Niki and T. Matsushima. 1997. Morphological analysis of Chlamydia pneumoniae. J. Jpn. Chemother. 45: 255–264.Google Scholar
  125. Molder, J.W., B.R.S. McCormack, F.M. Gogolak, M.M. Zebovitz and M.K. Itatani. 1955. Production and properties of a penicillin-resistant strain of feline pneumonitis virus. J. Infect. Dis. 96: 57–74.Google Scholar
  126. Molder, J.W., T.P. Hatch, C.-C. Kuo, J. Schachter and J. Storz. 1984. Genus Chlamydia. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg). Williams & Wilkins, Baltimore, pp. 729–739.Google Scholar
  127. Neeper, I.D., D.L. Patton and C.C. Kuo. 1990. Cinematographic observations of growth cycles of Chlamydia trachomatis in primary cultures of human amniotic cells. Infect. Immun. 58: 2042–2047.PubMedGoogle Scholar
  128. Nigg, C. and M.D. Eaton. 1944. Isolation from normal mice of a pneumotropic virus which forms elementary bodies. J. Exp. Med. 79: 497–510.PubMedGoogle Scholar
  129. Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740.PubMedGoogle Scholar
  130. Page, L.A. 1968. Proposal for the recognition of two species in the genus Chlamydia Jones, Rake, and Stearns 1945. Int. J. Syst. Bacteriol. 18: 51–66.Google Scholar
  131. Page, L.A. and R.C. Cutlip. 1982. Morphological and immunological confirmation of the presence of Chlamydiae in the gut tissues of the Chesapeake Bay clam, Mercenaria mercenaria. Curr. Microbiol. 7: 297–300.Google Scholar
  132. Palmer, L. and S. Falkow. 1986. A common plasmid of Chlamydia trachomatis. Plasmid 16: 52–62.PubMedGoogle Scholar
  133. Patton, D.L., P.K. Cummings, C. Sweeney, T. Yvonne and C. C. Kuo. 1998. In vivo uptake of Chlamydia trachomatis by fallopian tube epithelial cells is rapid. In Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection (edited by Stephens, Byrne, Christiansen, Clarke, Grayston, D. Rank, Ridgway, Saikku, Schachter and Stamm), San Francisco, pp. 87–90.Google Scholar
  134. Peeling, R.W., J. Peeling and R.C. Brunham. 1989. High-resolution 31P nuclear magnetic resonance study of Chlamydia trachomatis: induction of ATPase activity in elementary bodies. Infect. Immun. 57: 3338–3344.PubMedGoogle Scholar
  135. Peterson, E.M. and L.M. de la Maza. 1988. Chlamydia parasitism: ultrastructural characterization of the interaction between the chlamydial cell envelope and the host cell. J. Bacteriol. 170: 1389–1392.PubMedGoogle Scholar
  136. Peterson, E.M., B.A. Markoff, J. Schachter and L.M. de la Maza. 1990. The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23: 144–148.PubMedGoogle Scholar
  137. Petersson, B., A. Andersson, T. Leitiner, O. Olsvik, M. Uhlen, C. Storey and C. Black. 1997. Evolutionary relationships among members of the genus Chlamydia based on 16S rDNA analysis. J. Bacteriol. 179: 4195–4205.Google Scholar
  138. Pickett, M.A., J.S. Everson, P.J. Pead and I.N. Clarke. 2005. The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology 151: 893–903.PubMedGoogle Scholar
  139. Plaunt, M.R. and T.P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56: 3021–3025.PubMedGoogle Scholar
  140. Pudjiatmoko, H. Fukushi, Y. Ochiai, T. Yamaguchi and K. Hirai. 1997. Phylogenetic analysis of the genus Chlamydia based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 47: 425–431.PubMedGoogle Scholar
  141. Puolakkainen, M., C.C. Kuo and L.A. Campbell. 2005. Chlamydia pneumoniae uses the mannose 6-phosphate/insulin-like growth factor 2 receptor for infection of endothelial cells. Infect. Immun. 73: 4620–4625.PubMedGoogle Scholar
  142. Rake, E.G. 1957. Family II. Chlamydiaceae fam. nov. In Bergey’s Manual of Determinative Bacteriology, 7th edn (edited by Breed, Murray and Smith). Williams & Wilkins, Baltimore, pp. 957–968.Google Scholar
  143. Raulston, J.E., C.H. Davis, D.H. Schmiel, M.W. Morgan and P.B. Wyrick. 1993. Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the Hsp70 family of proteins. J. Biol. Chem. 268: 23139–23147.PubMedGoogle Scholar
  144. Read, T.D., C.M. Fraser, R.C. Hsia and P.M. Bavoil. 2000. Comparative analysis of Chlamydia bacteriophages reveals variation localized to a putative receptor binding domain. Microb. Comp. Genomics 5: 223–231.PubMedGoogle Scholar
  145. Reed, S.I., L.E. Anderson and H.M. Jenkin. 1981. Use of cycloheximide to study independent lipid metabolism of Chlamydia trachomatis cultivated in mouse L cells grown in serum-free medium. Infect. Immun. 31: 668–673.PubMedGoogle Scholar
  146. Richmond, S.J., P. Stirling and C.R. Ashley. 1982. Virus infecting the reticulate bodies of an avian strain of Chlamydia psittaci. FEMS Microbiol. Lett. 14: 31–36.Google Scholar
  147. Ripa, K.R. and P. A. Mardh. 1977. Cultivation of Chlamydia trachomatis in cycloheximide-treated McCoy cells. J. Clin. Microbiol. 6: 328–331.PubMedGoogle Scholar
  148. Roblin, P.M., W. Dumornay and M.R. Hammerschlag. 1992. Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J. Clin. Microbiol. 30: 1968–1971.PubMedGoogle Scholar
  149. Rockey, D.D. and J.L. Rosquist. 1994. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect. Immun. 62: 106–112.PubMedGoogle Scholar
  150. Rodolakis, A. 1983. In vitro and in vivo properties of chemically induced temperature-sensitive mutants of Chlamydia psittaci var. ovis: screening in a murine model. Infect. Immun. 42: 525–530.PubMedGoogle Scholar
  151. Schachter, J., H.B. Ostler and K.F. Meyer. 1969. Human infection with the agent of feline pneumonitis. Lancet 1: 1063–1065.PubMedGoogle Scholar
  152. Schachter, J., R.S. Stephens, P. Timms, C. Kuo, P.M. Bavoil, S. Birkelund, J. Boman, H. Caldwell, L.A. Campbell, M. Chernesky, G. Christiansen, I.N. Clarke, C. Gaydos, J.T. Grayston, T. Hackstadt, R. Hsia, B. Kaltenboeck, M. Leinonnen, D. Ojcius, G. McClarty, J. Orfila, R. Peeling, M. Puolakkainen, T.C. Quinn, R.G. Rank, J. Raulston, G.L. Ridgeway, P. Saikku, W.E. Stamm, D. Taylor-Robinson, S.P. Wang and P.B. Wyrick. 2001. Radical changes to chlamydial taxonomy are not necessary just yet. Int. J. Syst. Evol. Microbiol. 51: 249; author reply 251–253.Google Scholar
  153. Scidmore, M.A., E.R. Fischer and T. Hackstadt. 1996. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell Biol. 134: 363–374.PubMedGoogle Scholar
  154. Sneath, P.H.A. 1992. International Code of Nomenclature of Bacteria (1990 Revision). American Society for Microbiology, Washington, D.C.Google Scholar
  155. Sparks, A.K., J.F. Morado and J.W. Hawkes. 1985. A systemic microbial disease in the Dungeness crab, Cancer magister, caused by a Chlamydia-like organism. J. Invertebr. Pathol. 45: 204–217.Google Scholar
  156. Spencer, W.N. and F.W. Johnson. 1983. Simple transport medium for the isolation of Chlamydia psittaci from clinical material. Vet. Rec. 113: 535–536.PubMedGoogle Scholar
  157. Stephens, R.S., M.R. Tam, C.C. Kuo and R.C. Nowinski. 1982. Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. J. Immunol. 128: 1083–1089.PubMedGoogle Scholar
  158. Stephens, R.S., E.A. Wagar and G.K. Schoolnik. 1988. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J. Exp Med. 167: 817–831.PubMedGoogle Scholar
  159. Stephens, R.S. 1989. Antigenic variation of Chlamydia trachomatis. In Intracellular Parasitism (edited by Molder). CRC Press, Boca Raton, FL, pp. 51–62.Google Scholar
  160. Stephens, R.S., S. Kalman, C. Lammel, J. Fan, R. Marathe, L. Aravind, W. Mitchell, L. Olinger, R.L. Tatusov, Q. Zhao, E.V. Koonin and R.W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754–759.PubMedGoogle Scholar
  161. Stephens, R.S., K. Koshiyama, E. Lewis and A. Kubo. 2001. Heparin-binding outer membrane protein of chlamydiae. Mol. Microbiol. 40: 691–699.PubMedGoogle Scholar
  162. Stephens, R.S. 2002. Chlamydiae and evolution: a billion years and counting. In Chlamydial Infections. Proceedings of the Tenth International Symposium on Human Chlamydial Infections (edited by Schachter, Christiansen, Clarke et al.), Basim Yeri, Turkey, pp. 3–12.Google Scholar
  163. Storey, C.C., M. Lusher and S.J. Richmond. 1989a. Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J. Gen. Virol. 70: 3381–3390.PubMedGoogle Scholar
  164. Storey, C.C., M. Lusher, S.J. Richmond and J. Bacon. 1989b. Further characterization of a bacteriophage recovered from an avian strain of Chlamydia psittaci. J. Gen. Virol. 70: 1321–1327.PubMedGoogle Scholar
  165. Stothard, D.R., J.A. Williams, B. Van Der Pol and R.B. Jones. 1998. Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect. Immun. 66: 6010–6013.Google Scholar
  166. Su, H., N.G. Watkins, Y.X. Zhang and H.D. Caldwell. 1990. Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. 58: 1017–1025.PubMedGoogle Scholar
  167. T’ang, F., J. Chang, Y. Huang and K. Wang. 1957. Studies on the etiology of trachoma with special reference to isolation of the virus in chick embryo. Chin. Med. J. 75: 429–447.Google Scholar
  168. Thomas, N.S., M. Lusher, C.C. Storey and I.N. Clarke. 1997. Plasmid diversity in Chlamydia. Microbiology 143: 1847–1854.PubMedGoogle Scholar
  169. Ting, L.M., R.C. Hsia, C.G. Haidaris and P.M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63: 3600–3608.PubMedGoogle Scholar
  170. Tipples, G. and G. McClarty. 1993. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol. Microbiol. 8: 1105–1114.PubMedGoogle Scholar
  171. Tjaden, J., H.H. Winkler, C. Schwoppe, M. Van Der Laan, T. Mohlmann and H.E. Neuhaus. 1999. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181: 1196–1202.PubMedGoogle Scholar
  172. Tribby, II, R.R. Friis and J.W. Moulder. 1973. Effect of chloramphenicol, rifampicin, and nalidixic acid on Chlamydia psittaci growing in L cells. J. Infect. Dis. 127: 155–163.PubMedGoogle Scholar
  173. Vanrompay, D., W. De Meurichy, R. Ducatelle and F. Haesebrouck. 1994. Pneumonia in Moorish tortoises (Testudo graeca) associated with avian serovar A Chlamydia psittaci. Vet. Rec. 135: 284–285.PubMedGoogle Scholar
  174. Wagar, E.A. and R.S. Stephens. 1988. Developmental-form-specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56: 1678–1684.PubMedGoogle Scholar
  175. Wagar, E.A., J. Schachter, P. Bavoil and R.S. Stephens. 1990. Differential human serologic response to two 60,000 molecular weight Chlamydia trachomatis antigens. J. Infect. Dis. 162: 922–927.PubMedGoogle Scholar
  176. Wang, S.P. and J.T. Grayston. 1970. Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organisms in a new microtiter indirect immunofluorescence test. Am. J. Ophthalmol. 70: 367–374.PubMedGoogle Scholar
  177. Wang, S.P., C.C. Kuo and J.T. Grayston. 1973. A simplified method for immunological typing of trachoma-inclusion conjunctivitis-lymphogranuloma venereum organisms. Infect. Immun. 7: 356–360.PubMedGoogle Scholar
  178. Weisburg, W.G., T.P. Hatch and C.R. Woese. 1986. Eubacterial origin of Chlamydiae. J. Bacteriol. 167: 570–574.PubMedGoogle Scholar
  179. Williams, J.E. 1984. Proposal to reject the new combination Yersinia pseudotuberculosis subsp. pestis for violation of the First Principle of the International Code of Nomenclature of Bacteria. Int. J. Syst. Bacteriol. 34: 268–269.Google Scholar
  180. Willis, J.M., G. Watson, M. Lusher, T.S. Mair, D. Wood and S.J. Richmond. 1990. Characterization of Chlamydia psittaci isolated from a horse. Vet. Microbiol. 24: 11–19.Google Scholar
  181. Wolf, K., E. Fischer, D. Mead, G. Zhong, R. Peeling, B. Whitmire and H.D. Caldwell. 2001. Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect. Immun. 69  : 3082–3091.PubMedGoogle Scholar
  182. Wyrick, P.B., J. Choong, C.H. Davis, S.T. Knight, M.O. Royal, A.S. Maslow and C.R. Bagnell. 1989. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57: 2378–2389.PubMedGoogle Scholar
  183. Yang, Z.P., P.K. Cummings, D.L. Patton and C.C. Kuo. 1994. Ultrastructural lung pathology of experimental Chlamydia pneumoniae pneumonitis in mice. J. Infect. Dis. 170: 464–467.PubMedGoogle Scholar
  184. Allegra, L and F. Blasi (editors). 1999. Chlamydia pneumoniae. Springer-Verlag Italiana, Milano.Google Scholar
  185. Barron A.L. (Editor). 1988. Microbiology of Chlamydia. CRC Press, Boca Raton.Google Scholar
  186. Bavoil, P. and P. Wyrick (editors). 2006. Chlamydia: Genomics, Pathogenesis and Implications for Control. Horizon Press, Norwich, UK.Google Scholar
  187. Campbell, L.A. and C.-C. Kuo. 2004. Chlamydia pneumoniae - an infectious risk factor for atherosclerosis? Nature Rev. Microbiol. 2: 23–32.Google Scholar
  188. Campbell, L.A., C.-C. Kuo and C. Gaydos. 2006. Chlamydial Infections. In Detrick, B., R. G. Hamilton and J. D. Folds. (editors) Manual of Molecular and Clinical Laboratory Immunology. 7th edn. American Society for Microbiology Press, Washington, D.C., pp. 518–525.Google Scholar
  189. Campbell, L.A., J.M. Marrazzo, W.E. Stamm and C.-C. Kuo. 2001. Chapter 27. Chlamydiae. In Laboratory Diagnosis of Bacterial Infections (edited by Cimolai). Marcel Dekker, New York, pp. 795–821.Google Scholar
  190. Gordon, F.B. (editor). 1962. The Biology of the Trachoma Agent. New York Academy of Science, New York.Google Scholar
  191. Hanna, L, J. Schachter, C.R. Dawson and P. Thygeson (editors). 1967. Trachoma and Allied Diseases. Am. J. Ophthal. 63: Part II.Google Scholar
  192. Kuo, C.-C., L.A. Jackson, L.A. Campbell and J.T. Grayston. 1995. Chlamydia pneumoniae (TWAR). Clin. Microbiol. Rev. 8: 451–461.PubMedGoogle Scholar
  193. Molder, J.W. (editor). 1989. Intracellular Parasitism. CRC Press, Boca Raton.Google Scholar
  194. Nichols, R.L. (editor) 1971. Trachoma and Related Diseases Caused by Chlamydial Agents. Excerpta Medica, Amsterdam.Google Scholar
  195. Stephens, R.S. (editor). 1999. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. American Society for Microbiology Press, Washington, D.C.Google Scholar
  196. Storz, J. 1971. Chlamydia and Chlamydia-induced Diseases. Charles C. Thomas, Springfield, IL.Google Scholar
  197. Storz, J. and B. Kaltenboeck, 1993. Disease diversity of Chlamydial Infections. In Rickettsial and Chlamydial Diseases of Domestic Animals (edited by Woldehiwet and Ristic). Pergamon Press, Oxford, pp. 363–392.Google Scholar
  198. Bradley, T.M., C.E. Newcomer and K.O. Maxwell. 1988. Epitheliocystis associated with massive mortalities of cultured lake trout Salvelinus namaycush. Dis. Aquat. Org. 4: 9–17.Google Scholar
  199. Draghi, A., 2nd, V.L. Popov, M.M. Kahl, J.B. Stanton, C.C. Brown, G.J. Tsongalis, A.B. West and S. Frasca, Jr. 2004. Characterization of “­Candidatus piscichlamydia salmonis” (order Chlamydiales), a ­chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J. Clin. Microbiol. 42: 5286–5297.PubMedGoogle Scholar
  200. Karlsen, M., A. Nylund, K. Watanabe, J.V. Helvik, S. Nylund and H. Plarre. 2008. Characterization of ‘Candidatus Clavochlamydia ­salmonicola’: an intracellular bacterium infecting salmonid fish. Environ. Microbiol. 10  : 208–218.PubMedGoogle Scholar
  201. Rourke, A.W., R.W. Davis and T.M. Bradley. 1984. A light and electron microscope study of epitheliocystis in juvenile steelhead trout, Salmo gairdneri Richardson. J. Fish Dis. 7: 301–309.Google Scholar
  202. Thomas, V., N. Casson and G. Greub. 2006. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ. Microbiol. 8: 2125–2135.PubMedGoogle Scholar
  203. Thomas, V., N. Casson and G. Greub. 2006. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ. Microbiol. 8: 2125–2135.PubMedGoogle Scholar
  204. Amann, R., N. Springer, W. Schonhuber, W. Ludwig, E.N. Schmid, K.D. Muller and R. Michel. 1997. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl. Environ. Microbiol. 63: 115–121.PubMedGoogle Scholar
  205. Birtles, R.J., T.J. Rowbotham, C. Storey, T.J. Marrie and D. Raoult. 1997. Chlamydia-like obligate parasite of free-living amoebae. Lancet 349: 925–926.PubMedGoogle Scholar
  206. Casson, N. and G. Greub. 2006. Resistance of different Chlamydia-like organisms to quinolones and mutations in the quinoline resistance-determining region of the DNA gyrase A- and topoisomerase-encoding genes. Int. J. Antimicrob. Agents 27: 541–544.PubMedGoogle Scholar
  207. Casson, N., N. Medico, J. Bille and G. Greub. 2006. Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. Microbes Infect. 8: 1294–1300.PubMedGoogle Scholar
  208. Collingro, A., C. Baranyi, R. Michel, M. Wagner, H. Aspöck, Horn, M., and J. Walochnik. 2004. Chlamydial endocytobionts of free-living amoebae differentially affect the growth rate of their hosts. Eur. J. Protistol. 40: 57–60.Google Scholar
  209. Collingro, A., S. Poppert, E. Heinz, S. Schmitz-Esser, A. Essig, M. Schweikert, M. Wagner and M. Horn. 2005a. Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. Microbiology 151: 301–309.PubMedGoogle Scholar
  210. Collingro, A., E.R. Toenshoff, M.W. Taylor, T.R. Fritsche, M. Wagner and M. Horn. 2005b. ‘Candidatus Protochlamydia amoebophila’, an endosymbiont of Acanthamoeba spp. Int. J. Syst. Evol. Microbiol. 55: 1863–1866.PubMedGoogle Scholar
  211. Corsaro, D. and D. Venditti. 2004. Emerging chlamydial infections. Crit. Rev. Microbiol. 30: 75–106.PubMedGoogle Scholar
  212. Corsaro, D., D. Venditti and M. Valassina. 2002. New parachlamydial 16S rDNA phylotypes detected in human clinical samples. Res. Microbiol. 153: 563–567.PubMedGoogle Scholar
  213. Dautry-Varsat, A., M.E. Balana and B. Wyplosz. 2004. Chlamydia-host cell interactions: recent advances on bacterial entry and intracellular development. Traffic 5: 561–570.PubMedGoogle Scholar
  214. Draghi, A., II, J. Bebak, V.L. Popov, A.C. Noble, S.J. Geary, A.B. West, P. Byrne and S. Frasca, Jr. 2007. Characterization of a Neochlamydia-like bacterium associated with epitheliocystis in cultured Arctic charr Salvelinus alpinus. Dis. Aquat. Org. 76: 27–38.PubMedGoogle Scholar
  215. Everett, K.D.E., R.M. Bush and A.A. Andersen. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 49: 415–440.PubMedGoogle Scholar
  216. Fredericks, D.N. and D.A. Relman. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev 9: 18–33.PubMedGoogle Scholar
  217. Fritsche, T.R., D. Sobek and R.K. Gautom. 1998. Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. FEMS Microbiol. Lett. 166: 231–236.PubMedGoogle Scholar
  218. Fritsche, T.R., M. Horn, M. Wagner, R.P. Herwig, K.H. Schleifer and R.K. Gautom. 2000. Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl. Environ. Microbiol. 66: 2613–2619.PubMedGoogle Scholar
  219. Greub, G. and D. Raoult. 2002a. Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl. Environ. Microbiol. 68: 3076–3084.PubMedGoogle Scholar
  220. Greub, G. and D. Raoult. 2002b. Parachlamydiaceae: potential emerging pathogens. Emerg. Infect. Dis. 8: 625–630.PubMedGoogle Scholar
  221. Greub, G., P. Berger, L. Papazian and D. Raoult. 2003a. Parachlamydiaceae as rare agents of pneumonia. Emerg. Infect. Dis. 9: 755–756.PubMedGoogle Scholar
  222. Greub, G., I. Boyadjiev, B. La Scola, D. Raoult and C. Martin. 2003b. Serological hint suggesting that Parachlamydiaceae are agents of pneumonia in polytraumatized intensive care patients. Ann. N. Y. Acad. Sci. 990: 311–319.PubMedGoogle Scholar
  223. Greub, G., B. La Scola and D. Raoult. 2003c. Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature. Ann. N. Y. Acad. Sci. 990: 628–634.PubMedGoogle Scholar
  224. Greub, G., J.L. Mege and D. Raoult. 2003d. Parachlamydia acanthamoebae enters and multiplies within human macrophages and induces their apoptosis [corrected]. Infect. Immun. 71: 5979–5985.PubMedGoogle Scholar
  225. Greub, G., F. Collyn, L. Guy and C.A. Roten. 2004. A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system. BMC Microbiol. 4: 48.PubMedGoogle Scholar
  226. Greub, G., J.L. Mege, J.P. Gorvel, D. Raoult and S. Meresse. 2005. Intracellular trafficking of Parachlamydia acanthamoebae. Cell. Microbiol. 7: 581–589.PubMedGoogle Scholar
  227. Greub, G., O. Hartung, T. Adekambi, Y.S. Alimi and D. Raoult. 2006. Chlamydialike organisms and atherosclerosis. Emerg. Infect. Dis. 12: 705–706.PubMedGoogle Scholar
  228. Heinz, E., I. Kolarov, C. Kastner, E.R. Toenshoff, M. Wagner and M. Horn. 2007. An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. Environ. Microbiol. 9: 1604–1609.PubMedGoogle Scholar
  229. Horn, M., M. Wagner, K.D. Muller, E.N. Schmid, T.R. Fritsche, K.H. Schleifer and R. Michel. 2000. Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146: 1231–1239.PubMedGoogle Scholar
  230. Horn, M., M. Wagner, K.D. Müller, E.N. Schmid, T.R. Fritsche, K.H. Schleifer and R. Michel. 2001. In Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List no. 81. Int. J. Syst. Evol. Microbiol. 51: 1229.Google Scholar
  231. Horn, M., A. Collingro, S. Schmitz-Esser, C.L. Beier, U. Purkhold, B. Fartmann, P. Brandt, G.J. Nyakatura, M. Droege, D. Frishman, T. Rattei, H.W. Mewes and M. Wagner. 2004. Illuminating the evolutionary history of chlamydiae. Science 304: 728–730.PubMedGoogle Scholar
  232. Horn, M., A. Collingro, S. Schmitz-Esser and M. Wagner. 2006. Environmental chlamydia genomics. In Chlamydia: genomics and pathogenesis (edited by Bavoil and Wyrick). Horizon Bioscience, Norwich, UK, pp. 25–44.Google Scholar
  233. Marrie, T.J., D. Raoult, B. La Scola, R.J. Birtles and E. de Carolis. 2001. Legionella-like and other amoebal pathogens as agents of community-acquired pneumonia. Emerg. Infect. Dis. 7: 1026–1029.PubMedGoogle Scholar
  234. Meijer, A., P.J. Roholl, J.M. Ossewaarde, B. Jones and B.F. Nowak. 2006. Molecular evidence for association of chlamydiales bacteria with epitheliocystis in leafy seadragon (Phycodurus eques), silver perch (Bidyanus bidyanus), and barramundi (Lates calcarifer). Appl. Environ. Microbiol. 72: 284–290.PubMedGoogle Scholar
  235. Michel, R., B. Hauröder-Philippczyk, K.-D. Müller and I. Weishaar. 1994. Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite. Eur. J. Protistol. 30: 104–110.Google Scholar
  236. Schmid, E.N., K.D. Mueller and R. Michel. 2001. Evidence for bacteriophages within Neochlamydia hartmannellae, an obligate endoparasitic bacterium of the free-living amoeba Hartmannella vermiformis. Endocytobiol. Cell Res. 14: 115–119.Google Scholar
  237. Skriwan, C., M. Fajardo, S. Hagele, M. Horn, M. Wagner, R. Michel, G. Krohne, M. Schleicher, J. Hacker and M. Steinert. 2002. Various bacterial pathogens and symbionts infect the amoeba Dictyostelium discoideum. Int. J. Med. Microbiol. 291: 615–624.PubMedGoogle Scholar
  238. Thomas, V., N. Casson and G. Greub. 2006. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ. Microbiol. 8: 2125–2135.PubMedGoogle Scholar
  239. von Bomhard, W., A. Polkinghorne, Z. Huat Lu, L. Vaughan, A. Vogtlin, D.R. Zimmermann, B. Spiess and A. Pospischil. 2003. Detection of novel chlamydiae in cats with ocular disease. Am. J. Vet. Res. 64: 1421–1428.Google Scholar
  240. Draghi, A., 2nd, V.L. Popov, M.M. Kahl, J.B. Stanton, C.C. Brown, G.J. Tsongalis, A.B. West and S. Frasca, Jr. 2004. Characterization of “Candidatus Piscichlamydia salmonis” (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J. Clin. Microbiol. 42: 5286–5297.PubMedGoogle Scholar
  241. Casson, N., J.M. Entenza and G. Greub. 2007. Serological cross-reactivity between different Chlamydia-like organisms. J. Clin. Microbiol. 45: 234–236.PubMedGoogle Scholar
  242. Corsaro, D., V. Thomas, G. Goy, D. Venditti, R. Radek and G. Greub. 2005. ‘Candidatus Rhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst. Appl. Microbiol. 30: 221–228.Google Scholar
  243. Corsaro, D., V. Thomas, G. Goy, D. Venditti, R. Radek and G. Greub. 2007. ‘Candidatus Rhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst. Appl. Microbiol. 30: 221–228.PubMedGoogle Scholar
  244. Drobne, D., J. Strus, N. Znidarsic and P. Zidar. 1999. Morphological description of bacterial infection of digestive glands in the terrestrial isopod Porcellio scaber (Isopoda, crustacea). J. Invertebr. Pathol. 73: 113–119.PubMedGoogle Scholar
  245. Kostanjšek, R., J. štrus, D. Drobne and G. Avguštin. 2004. ‘Candidatus Rhabdochlamydia porcellionis’, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int. J. Syst. Evol. Microbiol. 54: 543–549.PubMedGoogle Scholar
  246. Morel, G. 1976. Studies on Porochlamydia buthi g. n., sp. n., an intracellular pathogen of the scorpion Buthus occitanus. J. Invertebr. Pathol. 28: 167–175.Google Scholar
  247. Radek, R. 2000. Light and electron microscopic study of a Rickettsiella species from the cockroach Blatta orientalis. J. Invertebr. Pathol. 76: 249–256.PubMedGoogle Scholar
  248. Shay, M.T., A. Bettica, G.M. Vernon and E.R. Witkus. 1985. Chlamydia isopodii sp. n., an obligate intracellular parasite of Porcellio scaber. Exp. Cell Biol. 53: 115–120.PubMedGoogle Scholar
  249. Weiss, E., G.A. Dasch and K.P. Chang. 1984. Genus VIII. Rickettsiella Philip 1956, 267AL. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 713–717.Google Scholar
  250. Chiel, E., Y. Gottlieb, E. Zchori-Fein, N. Mozes-Daube, N. Katzir, M. Inbar and M. Ghanim. 2007. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull. Entomol. Res. 97: 407–413.PubMedGoogle Scholar
  251. Costa, H.S., D.M. Westcot, D.E. Ullman, R. Rosell, J.K. Brown and M.W. Johnson. 1995. Morphological variation in Bemisia endosymbionts. Protoplasma 189: 194–202.Google Scholar
  252. Everett, K.D.E., R.M. Bush and A.A. Andersen. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 49: 415–440.PubMedGoogle Scholar
  253. Everett, K.D.E., M. Thao, M. Horn, G.E. Dyszynski and P. Baumann. 2005. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 55: 1581–1587.PubMedGoogle Scholar
  254. Israelsson, O. 2007. Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). J. Invertebr. Pathol. 96: 213–220.PubMedGoogle Scholar
  255. Kahane, S., R. Gonen, C. Sayada, J. Elion and M.G. Friedman. 1993. Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol. Lett. 109: 329–333.PubMedGoogle Scholar
  256. Kahane, S., D. Greenberg, M.G. Friedman, H. Haikin and R. Dagan. 1998. High prevalence of “Simkania” Z, a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. J. Infect. Dis. 177: 1425–1429.PubMedGoogle Scholar
  257. Kahane, S., K.D.E. Everett, N. Kimmel and M.G. Friedman. 1999. Simkania negevensis strain ZT: growth, antigenic and genome characteristics. Int. J. Syst. Bacteriol. 49: 815–820.PubMedGoogle Scholar
  258. Kahane, S., B. Dvoskin, M. Mathias and M.G. Friedman. 2001. Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl. Environ. Microbiol. 67: 4789–4795.PubMedGoogle Scholar
  259. Kahane, S., N. Kimmel and M.G. Friedman. 2002. The growth cycle of Simkania negevensis. Microbiology 148: 735–742.PubMedGoogle Scholar
  260. Lieberman, D., S. Kahane, D. Lieberman and M.G. Friedman. 1997. Pneumonia with serological evidence of acute infection with the Chlamydia-like microorganism “Z”. Am. J. Respir Crit. Care Med. 156: 578–582.PubMedGoogle Scholar
  261. Lieberman, D., B. Dvoskin, D.V. Lieberman, S. Kahane and M.G. Friedman. 2002. Serological evidence of acute infection with the Chlamydia-like microorganism Simkania negevensis (Z) in acute exacerbation of chronic obstructive pulmonary disease. Eur. J. Clin. Microbiol. Infect. Dis. 21: 307–309.PubMedGoogle Scholar
  262. Thao, M.L., L. Baumann, J.M. Hess, B.W. Falk, J.C.K. Ng, P.J. Gullan and P. Baumann. 2003. Phylogenetic evidence for two new insect-associated chlamydia of the family Simkaniaceae. Curr. Microbiol. 47: 46–50.PubMedGoogle Scholar
  263. Chua, P.K., J.E. Corkill, P.S. Hooi, S.C. Cheng, C. Winstanley and C.A. Hart. 2005. Isolation of Waddlia malaysiensis, a novel intracellular bacterium, from fruit bat (Eonycteris spelaea). Emerg. Infect. Dis. 11: 271–277.PubMedGoogle Scholar
  264. Dilbeck, P.M., J.F. Evermann, T.B. Crawford, A.C. Ward, C.W. Leathers, C.J. Holland, C.A. Mebus, L.L. Logan, F.R. Rurangirwa and T.C. McGuire. 1990. Isolation of a previously undescribed rickettsia from an aborted bovine fetus. J. Clin. Microbiol. 28: 814–816.PubMedGoogle Scholar
  265. Everett, K.D.E, R.M. Bush and A.A. Andersen. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 49  : 415–440.PubMedGoogle Scholar
  266. Kocan, K.M., T.B. Crawford, P.M. Dilbeck, J.F. Evermann and T.C. McGuire. 1990. Development of a rickettsia isolated from an aborted bovine fetus. J. Bacteriol. 172: 5949–5955.PubMedGoogle Scholar
  267. Rurangirwa, F.R., P.M. Dilbeck, T.B. Crawford, T.C. McGuire and T.F. McElwain. 1999. Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int. J. Syst. Bacteriol. 49  : 577–581.PubMedGoogle Scholar

Copyright information

© Bergey’s Manual Trust 2010

Authors and Affiliations

  1. 1.Department of PathobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations