Skip to main content
  • 14k Accesses

Abstract

The phylum Verrucomicrobia is defined by phylogenetic analysis of 16S rRNA gene sequences of cultured strains and environmental clone sequences retrieved from a wide variety of environments. All cultivated members of the phylum stain Gram-negative; many have intracellular compartments bounded by internal membranes. Menaquinones are the dominant respiratory quinones; ubiquinones have not been detected. Most members are chemoheterotrophs, preferring carbohydrates including complex natural polysaccharides. Recently isolated members are thermoacidophilic methylotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  • Alain, K., T. Holler, F. Musat, M. Elvert, T. Treude and M. Kruger. 2006. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 8: 574–590.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Martinez, K., K.B. Suttle, E.L. Brodie, M.E. Power, G.L. Andersen and J.F. Banfield. 2009. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 3: 738–744.

    Article  PubMed  CAS  Google Scholar 

  • Dojka, M.A., P. Hugenholtz, S.K. Haack and N.R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869–3877.

    PubMed  CAS  Google Scholar 

  • Dunfield, P.F., A. Yuryev, P. Senin, A.V. Smirnova, M.B. Stott, S. Hou, B. Ly, J.H. Saw, Z. Zhou, Y. Ren, J. Wang, B.W. Mountain, M.A. Crowe, T.M. Weatherby, P.L. Bodelier, W. Liesack, L. Feng, L. Wang and M. Alam. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Freitag, T.E. and J.I. Prosser. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 69: 1359–1371.

    Article  PubMed  CAS  Google Scholar 

  • Frey, J.C., J.M. Rothman, A.N. Pell, J.B. Nizeyi, M.R. Cranfield and E.R. Angert. 2006. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72: 3788–3792.

    Article  PubMed  CAS  Google Scholar 

  • Galperin, M.Y. 2008. New feel for new phyla. Environ. Microbiol. 10: 1927–1933.

    Article  PubMed  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1996. Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int. J. Syst. Bacteriol. 46: 960–966.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, H., M. Sunamura, K. Takai, T. Nunoura, T. Noguchi, H. Oida, Y. Furushima, H. Yamamoto, T. Oomori and K. Horikoshi. 2007. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol. 73: 7642–7656.

    Article  PubMed  CAS  Google Scholar 

  • Hou, S., K.S. Makarova, J.H. Saw, P. Senin, B.V. Ly, Z. Zhou, Y. Ren, J. Wang, M.Y. Galperin, M.V. Omelchenko, Y.I. Wolf, N. Yutin, E.V. Koonin, M.B. Stott, B.W. Mountain, M.A. Crowe, A.V. Smirnova, P.F. Dunfield, L. Feng, L. Wang and M. Alam. 2008. Complete genome sequence of the extremely acidophilic methanotroph ­isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Direct 3: 26.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.

    PubMed  CAS  Google Scholar 

  • Humayoun, S.B., N. Bano and J.T. Hollibaugh. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl. Environ. Microbiol. 69: 1030–1042.

    Article  PubMed  CAS  Google Scholar 

  • Islam, T., S. Jensen, L.J. Reigstad, Ø. Larsen and N.K. Birkeland. 2008. Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. U. S. A. 105: 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in ­libra­ries of 16S rRNA and 16S rRNA genes. Appl. Environ. ­Microbiol. 72: 1719–1728.

    Article  PubMed  CAS  Google Scholar 

  • Lau, W.W. and E.V. Armbrust. 2006. Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Environ. Microbiol. 8: 1688–1702.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.C., R.I. Webb, P.H. Janssen, P. Sangwan, T. Romeo, J.T. Staley and J.A. Fuerst. 2009. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol. 9: 5.

    Article  PubMed  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Nercessian, O., E. Noyes, M.G. Kalyuzhnaya, M.E. Lidstrom and L. Chistoserdova. 2005. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71: 6885–6899.

    Article  PubMed  CAS  Google Scholar 

  • Niemann, H., T. Losekann, D. de Beer, M. Elvert, T. Nadalig, K. ­Knittel, R. Amann, E.J. Sauter, M. Schluter, M. Klages, J.P. Foucher and A. Boetius. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854–858.

    Article  PubMed  CAS  Google Scholar 

  • Penn, K., D. Wu, J.A. Eisen and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680–1683.

    Article  PubMed  CAS  Google Scholar 

  • Pol, A., K. Heijmans, H.R. Harhangi, D. Tedesco, M.S.M. Jetten and H.J.M. Op den Camp. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874–878.

    Article  PubMed  CAS  Google Scholar 

  • Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, M. and M. Horn. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.

    Article  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. Int. J. Syst. Bacteriol. 46: 625–626.

    Article  Google Scholar 

  • Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.

    Article  PubMed  Google Scholar 

  • Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.

    Article  PubMed  Google Scholar 

  • Hayashi, H., M. Sakamoto and Y. Benno. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol. Immunol. 46: 819–831.

    PubMed  CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1998. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 64. Int. J. Syst. Bacteriol. 48: 327–328.

    Article  Google Scholar 

  • Hold, G.L., S.E. Pryde, V.J. Russell, E. Furnie and H.J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.

    PubMed  CAS  Google Scholar 

  • Jenkins, C., R. Samudrala, I. Anderson, B.P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati and J.T. Staley. 2002. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. U.S.A. 99: 17049–17054.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Mangin, I., R. Bonnet, L. Seksik, L. Rigottier-Gois, M. Sutren, Y. Bouhnik, C. Neut, M.D. Collins, J.-F. Colombel, P. Marteau and J. Dore. 2004. Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol. Ecol. 50: 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, K.E., S.H. Zinder, I. Hance, P. Burr, D. Odongo, D. Wasawo, A. Odenyo and R. Bishop. 2003. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5: 1212–1220.

    Article  PubMed  Google Scholar 

  • Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U.S.A. 97: 1813–1817.

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer, M., A.P. Bauer, M. Schrallhammer, L. Richter, W. Ludwig, K.H. Schleifer and G. Petroni. 2007a. Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method. Nucleic Acids Res. 35: e135.

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer, M., G. Rosati, W. Ludwig, K.H. Schleifer and G. Petroni. 2007b. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24: 1439–1442.

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer, M., K. Rappl, C. Eckl, A.P. Bauer, W. Ludwig, K.H. Schleifer and G. Petroni. 2008. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190: 3192–3202.

    Article  PubMed  CAS  Google Scholar 

  • Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.

    Article  PubMed  CAS  Google Scholar 

  • Salzman, N.H., H. de Jong, Y. Paterson, H.J. Harmsen, G.W. Welling and N.A. Bos. 2002. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148: 3651–3660.

    PubMed  CAS  Google Scholar 

  • Scheuermayer, M., T.A. Gulder, G. Bringmann and U. Hentschel. 2006. Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56: 2119–2124.

    Article  PubMed  CAS  Google Scholar 

  • Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U.S.A. 102: 9170–9175.

    Article  PubMed  CAS  Google Scholar 

  • Sontag, C.A., J.T. Staley and H.P. Erickson. 2005. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell. Biol. 169: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Sontag, C.A., H. Sage and H.P. Erickson. 2009. BtubA–BtubB heterodimer is an essential intermediate in protofilament assembly. PLoS One 4: e7253.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, M., A. Yoneya, Y. Miyazaki, K. Kondo, H. Makita, M. Kondoh, I. Suzuki and J. Koizumi. 2008. Prosthecobacter fluviatilis sp. nov., which lacks the bacterial tubulin btubA and btubB genes. Int. J. Syst. Evol. Microbiol. 58: 1561–1565.

    Article  PubMed  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.

    Article  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. Int. J. Syst. Bacteriol. 46: 625–626.

    Article  Google Scholar 

  • Yee, B., F.F. Lafi, B. Oakley, J.T. Staley and J.A. Fuerst. 2007. A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species. BMC Evol. Biol. 7: 37.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.

    Article  PubMed  Google Scholar 

  • Schlesner, H. 1987. Verrucomicrobium spinosum gen. nov., sp. nov., a fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10: 54–56.

    Article  Google Scholar 

  • Schlesner, H. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 25. Int. J. Syst. Bacteriol. 38: 220–222.

    Article  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.

    Article  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. Int. J. Syst. Bacteriol. 46: 625–626.

    Article  Google Scholar 

  • Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.

    Article  PubMed  Google Scholar 

  • Albrecht, W., A. Fischer, J. Smida and E. Stackebrandt. 1987. Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent. Syst. Appl. Microbiol. 10: 57–62.

    Article  CAS  Google Scholar 

  • Bomar, D. and E. Stackebrandt. 1987. 5S rRNA sequences from Nitrobacter winogradskyi, Caulobacter crescentus, Stella humosa and Verrucomicrobium spinosum. Nucleic Acids Res. 15: 9597.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire, G., W.R. Sistrom and R.Y. Stanier. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell Phys. 49: 25–68.

    Article  CAS  Google Scholar 

  • de Bont, J.A.M., J.T. Staley and H.S. Pankratz. 1970. Isolation and description of a non-motile, fusiform, stalked bacterium, a representative of a new genus. Antonie van Leeuwenhoek 36: 397–407.

    Article  PubMed  Google Scholar 

  • Garrity, G.M. and J.G. Holt. 2001. The Road Map to the Manual. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria (edited by Boone, Castenholz and Garrity). Springer, New York, pp. 119–166.

    Google Scholar 

  • Gorlenko, V.M. 1970. A new phototrophic green sulphur bacterium: Prosthecochloris aestuarii nov. gen. nov. spec. Z. Allg. Mikrobiol. 10: 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko, V.M. and E.V. Lebedeva. 1971. New green sulphur bacteria with appendages [in Russian, with English summary]. Mikrobiologya 40: 1035–1039.

    CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1996. Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int. J. Syst. Bacteriol. 46: 960–966.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1998. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 64. Int. J. Syst. Bacteriol. 48: 327–328.

    Article  Google Scholar 

  • Henrici, A.T. and D.E. Johnson. 1935. Studies of freshwater bacteria: II. Stalked bacteria, a new order of Schizomycetes. J. Bacteriol. 30: 61–93.

    PubMed  CAS  Google Scholar 

  • Hirsch, P., M. Müller and H. Schlesner. 1977. New aquatic budding and prosthecate bacteria and their taxonomic position. In Symposium on Aquatic Microbiology, Lancaster, UK. Academic Press, ­London, pp. 107–133.

    Google Scholar 

  • Houwink, A.L. 1951. Caulobacter versus Bacillus spec. div. Nature 168: 654–655.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, C., R. Samudrala, I. Anderson, B.P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati and J.T. Staley. 2002. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. U. S. A. 99: 17049–17054.

    Article  PubMed  CAS  Google Scholar 

  • Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U. S. A. 97: 1813–1817.

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer, M., G. Rosati, W. Ludwig, K.H. Schleifer and G. Petroni. 2007. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24: 1439–1442.

    Article  PubMed  CAS  Google Scholar 

  • Schlesner, H. 1987. Verrucomicrobium spinosum gen. nov., sp. nov., a ­fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10: 54–56.

    Article  Google Scholar 

  • Schlesner, H. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 25. Int. J. Syst. Bacteriol. 38: 220–222.

    Article  Google Scholar 

  • Schlesner, H. 1992. The genus Verrucomicrobium. In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, vol. 4 (edited by Balows, Dworkin, Harder, Schleifer and Trüper). Springer, New York, pp. 3806–3808.

    Google Scholar 

  • Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U. S. A. 102: 9170–9175.

    Article  PubMed  CAS  Google Scholar 

  • Sittig, M. and H. Schlesner. 1993. Chemotaxonomic investigation of various prosthecate and or budding bacteria. Syst. Appl. Microbiol. 16: 92–103.

    Article  CAS  Google Scholar 

  • Sontag, C.A., J.T. Staley and H.P. Erickson. 2005. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell. Biol. 169: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Staley, J.T. 1968. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95: 1921–1942.

    PubMed  CAS  Google Scholar 

  • Staley, J.T., J.A.M. de Bont and K. de Jonge. 1976. Prosthecobacter ­fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van Leeuwenhoek 42: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Staley, J.T., J.A.M. de Bont and K. de Jonge. 1980. Prosthecobacter ­fusiformis gen. and sp. nov., nom. rev. Int. J. Syst. Bacteriol. 30: 595.

    Article  Google Scholar 

  • Staley, J.T., H. Bouzek and C. Jenkins. 2005. Eukaryotic signature ­proteins of Prosthecobacter dejongeii and Gemmata sp. Wa-1 as revealed by in silico analysis. FEMS Microbiol. Lett. 243: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Vasilyeva, L.V. 1985. Stella, a new genus of soil prosthecobacteria, with proposals for Stella humosa sp. nov. and Stella vacuolata sp. nov. Int. J. Syst. Bacteriol. 35: 518–521.

    Article  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.

    Article  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. In Int. J. Syst. Bacteriol. 46: 625–626.

    Article  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey and E. Stackebrandt. 1997. The presence of a dnaK (HSP70) multigene family in members of the orders ­Planctomycetales and Verrucomicrobiales. J. Bacteriol. 179: 6360–6366.

    PubMed  CAS  Google Scholar 

  • Ward, N.L., F.A. Rainey, B.P. Hedlund, J.T. Staley, W. Ludwig and E. Stackebrandt. 2000. Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny. Int. J. Syst. Evol. Microbiol. 50: 1965–1972.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.

    Article  PubMed  Google Scholar 

  • Derrien, M., E.E. Vaughan, C.M. Plugge and W.M. de Vos. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54: 1469–1476.

    Article  CAS  Google Scholar 

  • Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.

    Article  PubMed  Google Scholar 

  • Hayashi, H., M. Sakamoto and Y. Benno. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol. Immunol. 46: 819–831.

    PubMed  CAS  Google Scholar 

  • Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hold, G.L., S.E. Pryde, V.J. Russell, E. Furnie and H.J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Hoskins, L.C. and E.T. Boulding. 1981. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J. Clin. Invest. 67: 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Mangin, I., R. Bonnet, L. Seksik, L. Rigottier-Gois, M. Sutren, Y. ­Bouhnik, C. Neut, M.D. Collins, J-F. Colombel, P. Marteau and J. Dore. 2004. Molecular inventory of faecal microflora in patients with Crohn’s ­disease. FEMS Microbiol. Ecol. 50: 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, K.E., S.H. Zinder, I. Hance, P. Burr, D. Odongo, D. Wasawo, A. Odenyo and R. Bishop. 2003. Phylogenetic analysis of the ­microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5: 1212–1220.

    Article  PubMed  Google Scholar 

  • Plugge, C.M. 2005. Anoxic media design, preparation, and considerations. In Methods in Enzymology, vol. 397. Academic Press, New York, pp. 3–16.

    Google Scholar 

  • Salzman, N.H., H. de Jong, Y. Paterson, H.J. Harmsen, G.W. Welling and N.A. Bos. 2002. Analysis of 16S libraries of mouse gastrointes­tinal microflora reveals a large new group of mouse intestinal ­bacteria. Microbiology 148: 3651–3660.

    PubMed  CAS  Google Scholar 

  • Schlesner, H. 1987. Verrucomicrobium spinosum gen. nov., sp. nov., a ­fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10: 54–56.

    Article  Google Scholar 

  • Staley, J.T., J.A.M. de Bont and K. de Jonge. 1976. Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van ­Leeuwenhoek 42: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, H., A. Katsuta, H. Sekiguchi, S. Matsuda, K. Adachi, K. Shindo, J. Yoon, A. Yokota and Y. Shizuri. 2007. Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 1630–1634.

    Article  PubMed  Google Scholar 

  • Scheuermayer, M., T.A. Gulder, G. Bringmann and U. Hentschel. 2006. Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56: 2119–2124.

    Article  PubMed  CAS  Google Scholar 

  • Shindo, K., E. Asagi, A. Sano, E. Hotta, N. Minemura, K. Mikami, E. Tamesada, N. Misawa and T. Maoka. 2008. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-­carotenoic acids produced by a new marine bacterium Rubritalea squalenifaciens. J. Antibiot. (Tokyo) 61: 185–191.

    Article  CAS  Google Scholar 

  • Yoon, J., Y. Matsuo, S. Matsuda, K. Adachi, H. Kasai and A. Yokota. 2007. Rubritalea spongiae sp. nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’, isolated from marine animals. Int. J. Syst. Evol. Microbiol. 57: 2337–2343.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J., Y. Matsuo, S. Matsuda, K. Adachi, H. Kasai and A. Yokota. 2008. Rubritalea sabuli sp. nov., a carotenoid- and squalene-­producing ­member of the family Verrucomicrobiaceae, isolated from marine ­sediment. Int. J. Syst. Evol. Microbiol. 58: 992–997.

    Article  PubMed  CAS  Google Scholar 

  • Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ­‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.U. ­Frigaard, A. Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm and D.M. Karl. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311: 496–503.

    Article  PubMed  CAS  Google Scholar 

  • Glöckner, F.O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl. Environ. Microbiol. 66: 5053–5065.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, A.J., J. Bowyer, M.P. Holley, M. O’Donoghue, M. Montgomery and M.R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Hongoh, Y., P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn and T. Kudo. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and ­termite host. Appl. Environ. Microbiol. 71: 6590–6599.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.

    PubMed  CAS  Google Scholar 

  • Jenkins, C., R. Samudrala, I. Anderson, B.P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati and J.T. Staley. 2002. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. U. S. A. 99: 17049–17054.

    Article  PubMed  CAS  Google Scholar 

  • Löwe, J., F. van den Ent and L.A. Amos. 2004. Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct. 33: 177–198.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, ­Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. ­Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Morales, S.E., P.J. Mouser, N. Ward, S.P. Hudman, N.J. Gotelli, D.S. Ross and T.A. Lewis. 2006. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microb. Ecol. 52: 34–44.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, H., Y. Hongoh, R. Usami, T. Kudo and M. Ohkuma. 2005. Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol. Ecol. 54: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U. S. A. 97: 1813–1817.

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer, M., G. Rosati, W. Ludwig, K.H. Schleifer and G. Petroni. 2007. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24: 1439–1442.

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer, M., K. Rappl, C. Eckl, A.P. Bauer, W. Ludwig, K.H. Schleifer and G. Petroni. 2008. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190: 3192–3202.

    Article  PubMed  CAS  Google Scholar 

  • Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, T., K. Ishizuka and I. Kato. 2003a. Isolation and characterization of a fucoidan-degrading marine bacterium. Mar. Biotechnol. (N.Y.) 5: 409–416.

    Article  CAS  Google Scholar 

  • Sakai, T., K. Ishizuka, K. Shimanaka, K. Ikai and I. Kato. 2003b. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar. Biotechnol. (N.Y.) 5: 536–544.

    Article  CAS  Google Scholar 

  • Schafer, H., P. Servais and G. Muyzer. 2000. Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch. Microbiol. 173: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U. S. A. 102: 9170–9175.

    Article  PubMed  CAS  Google Scholar 

  • Sekar, R., D.K. Mills, E.R. Remily, J.D. Voss and L.L. Richardson. 2006. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72: 5963–5973.

    Article  PubMed  CAS  Google Scholar 

  • Shinzato, N., M. Muramatsu, T. Matsui and Y. Watanabe. 2005. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci. Biotechnol. Biochem. 69: 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  • Sontag, C.A., J.T. Staley and H.P. Erickson. 2005. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell. Biol. 169: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748–4755.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M.T., O. Beja, L.T. Taylor and E.F. Delong. 2001. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ. Microbiol. 3: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Namakura, R.I. Aminov and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6: 273–284.

    Article  CAS  Google Scholar 

  • Chin, K.J., W. Liesack and P.H. Janssen. 2001. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51: 1965–1968.

    Article  PubMed  CAS  Google Scholar 

  • Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘­Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Chin, K.J. and P.H. Janssen. 2002. Propionate formation by Opitutus terrae in pure culture and in mixed culture with a hydrogenotrophic methanogen and implications for carbon fluxes in anoxic rice paddy soil. Appl. Environ. Microbiol. 68: 2089–2092.

    Article  PubMed  CAS  Google Scholar 

  • Chin, K.J., D. Hahn, U. Hengstmann, W. Liesack and P.H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65: 5042–5049.

    PubMed  CAS  Google Scholar 

  • Chin, K.J., W. Liesack and P.H. Janssen. 2001. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51: 1965–1968.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., C. Pitulle, K.L. Hershberger and N.R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366–376.

    PubMed  CAS  Google Scholar 

  • Janssen, P.H. 1998. Pathway of glucose catabolism by strain VeGlc2, an anaerobe belonging to the Verrucomicrobiales lineage of bacterial descent. Appl. Environ. Microbiol. 64: 4830–4833.

    PubMed  CAS  Google Scholar 

  • Janssen, P.H., A. Schuhmann, E. Mörschel and F.A. Rainey. 1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl. Environ. Microbiol. 63: 1382–1388.

    PubMed  CAS  Google Scholar 

  • Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, W.Y. and W.D. Jean. 1998. Alterococcus agarolyticus, gen.nov., sp.nov., a halophilic thermophilic bacterium capable of agar degradation. Can. J. Microbiol. 44: 637–645.

    PubMed  CAS  Google Scholar 

  • Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748–4475.

    Article  PubMed  CAS  Google Scholar 

  • Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘­Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J.J. and G.H.G. Davis. 1979. Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int. J. Syst. Bacteriol. 29: 56–58.

    Article  CAS  Google Scholar 

  • Hayakawa, M. and H. Nonomura. 1987. Humic acid-vitamine agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65: 501–509.

    Article  CAS  Google Scholar 

  • Lyman, J. and R.H. Fleming. 1940. Composition of sea water. J. Mar. Res. 3: 134–146.

    CAS  Google Scholar 

  • Schleifer, K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407–477.

    PubMed  CAS  Google Scholar 

  • Yasumoto-Hirose, M., M. Nishijima, M.K. Ngirchechol, K. Kanoh, Y. Shizuri and W. Miki. 2006. Isolation of marine bacteria by in situ ­culture on media-supplemented polyurethane foam. Mar. ­Biotechnol. (N.Y.) 8: 227–237.

    Article  CAS  Google Scholar 

  • Yokota, A., T. Tamura, T. Nishii and T. Hasegawa. 1993. Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic, Gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int. J. Syst. Bacteriol. 43: 52–57.

    Article  Google Scholar 

  • Yoon, J., Y. Matsuo, S. Matsuda, K. Adachi, H. Kasai and A. Yokota. 2007a. Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’, isolated from marine sand. Int. J. Syst. Evol. Microbiol. 57: 2067–2072.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J., N. Oku, S. Matsuda, H. Kasai and A. Yokota. 2007b. Pelagicoccus croceus sp. nov., a novel marine member of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’ isolated from seagrass. Int. J. Syst. Evol. Microbiol. 57: 2874–2880.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J., M. Yasumoto-Hirose, A. Katsuta, H. Sekiguchi, S. Matsuda, H. Kasai and A. Yokota. 2007c. Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum ‘Verrucomicrobia’ isolated from seawater in Japan. Int. J. Syst. Evol. Microbiol. 57: 959–963.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J., M. Yasumoto-Hirose, Y. Matsuo, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2007d. Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum ‘Verrucomicrobia’, isolated from seawater by in situ cultivation. Int. J. Syst. Evol. Microbiol. 57: 1377–1385.

    Article  PubMed  Google Scholar 

  • Axelrood, P.E., M.L. Chow, C.C. Radomski, J.M. McDermott andJ. Davies. 2002. Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol. 48: 655–674.

    Google Scholar 

  • Borneman, J. and E.W. Triplett. 1997. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63: 2647–2653.

    Google Scholar 

  • Buckley, D.H. and T.M. Schmidt. 2001. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol. Ecol. 35: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, D.H. and T.M. Schmidt. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5: 441–452.

    Article  PubMed  Google Scholar 

  • Chan, O.C., X. Yang, Y. Fu, Z. Feng, L. Sha, P. Casper and X. Zou. 2006. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol. Ecol. 58: 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Chow, M.L., C.C. Radomski, J.M. McDermott, J. Davies and P.E. ­Axelrood. 2002. Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol. Ecol. 42: 347–357.

    Google Scholar 

  • Dojka, M.A., P. Hugenholtz, S.K. Haack and N.R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent- contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869–3877.

    PubMed  CAS  Google Scholar 

  • Dunbar, J., S.M. Barns, L.O. Ticknor and C.R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68: 3035–3045

    Google Scholar 

  • Elshahed, M.S., N.H. Youssef, A.M. Spain, C. Sheik, F.Z. Najar, L.O. Sukharnikov, B.A. Roe, J.P. Davis, P.D. Schloss, V.L. Bailey and L.R. Krumholz. 2008. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl. Environ. Microbiol. 74: 5422–5428.

    Article  PubMed  CAS  Google Scholar 

  • Felske, A. and A.D. Akkermans. 1998. Prominent occurrence of ­ribosomes from an uncultured bacterium of the Verrucomicrobiales cluster in grassland soils. Lett. Appl. Microbiol. 26: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Felske, A., A.D. Akkermans and W.M. de Vos. 1998. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. Appl. Environ. Microbiol. 64: 4581–4587.

    PubMed  CAS  Google Scholar 

  • Felske, A., A. Wolterink, R. Van Lis, W.M. de Vos and A.D. Akkermans. 2000. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes. Appl. Environ. Microbiol. 66: 3998–4003.

    Article  PubMed  CAS  Google Scholar 

  • Fulthorpe, R.R., L.F. Roesch, A. Riva and E.W. Triplett. 2008. Distantly sampled soils carry few species in common. ISME J. 2: 901–910.

    Article  PubMed  CAS  Google Scholar 

  • Furlong, M.A., D.R. Singleton, D.C. Coleman and W.B. Whitman. 2002. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68: 1265–1279.

    Google Scholar 

  • Graff, A. and R. Conrad. 2005. Impact of flooding on soil bacterial communities associated with poplar (Populus sp.) trees. FEMS Microbiol. Ecol. 53: 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, A.J., J. Bowyer, M.P. Holley, M. O’Donoghue, M. Montgomery and M.R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in ­Australian arid soils. FEMS Microbiol. Ecol. 33: 111–120.

    Google Scholar 

  • Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.

    PubMed  CAS  Google Scholar 

  • Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391–2396.

    Google Scholar 

  • Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719–1728.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.-S., Sparovek, G., Longo, R.M., De Melo, W.J. and D. Crowley. 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39: 684–690.

    Article  CAS  Google Scholar 

  • Lauber, C.L., M. Hamady, R. Knight and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75: 5111–5120.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.Y., J. Bollinger, D. Bezdicek and A. Ogram. 1996. Estimation of the abundance of an uncultured soil bacterial strain by a ­competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787–3793.

    PubMed  CAS  Google Scholar 

  • Liles, M.R., B.F. Manske, S.B. Bintrim, J. Handelsman and R.M. Goodman. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69: 2684–2691.

    Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Macalady, J.L., E.H. Lyon, B. Koffman, L.K. Albertson, K. Meyer, S. Galdenzi and S. Mariani. 2006. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl. Environ. Microbiol. 72: 5596–5609.

    Article  PubMed  CAS  Google Scholar 

  • Macrae, A., D.L. Rimmer and A.G. O’Donnell. 2000. Novel bacterial diversity recovered from the rhizosphere of oilseed rape (Brassica napus) determined by the analysis of 16S ribosomal DNA. Antonie van Leeuwenhoek 78: 13–21.

    Google Scholar 

  • Newton, R.J., A.D. Kent, E.W. Triplett and K.D. McMahon. 2006. ­Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 8: 956–970.

    Article  PubMed  Google Scholar 

  • Ochsenreiter, T., D. Selezi, A. Quaiser, L. Bonch-Osmolovskaya and C. Schleper. 2003. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5: 787–797.

    Google Scholar 

  • Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.

    Article  PubMed  CAS  Google Scholar 

  • Roesch, L.F., R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, S.H. Daroub, F.A. Camargo, W.G. Farmerie and E.W. Triplett. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1: 283–290.

    PubMed  CAS  Google Scholar 

  • Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.

    Article  PubMed  CAS  Google Scholar 

  • Tringe, S.G., C. von Mering, A. Kobayashi, A.A. Salamov, K. Chen, H.W. Chang, M. Podar, J.M. Short, E.J. Mathur, J.C. Detter, P. Bork, P. Hugenholtz and E.M. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove, T.T., A. Willems, M. Gillis and A. Coomans. 2000. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species ­(Nematoda, Longidoridae). Int. J. Syst. Evol. Microbiol. 50: 2197–2205.

    Article  PubMed  Google Scholar 

  • Vandekerckhove, T.T., A. Coomans, K. Cornelis, P. Baert and M. Gillis. 2002. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl. Environ. Microbiol. 68: 3121–3125.

    Article  PubMed  CAS  Google Scholar 

  • Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.

    Google Scholar 

  • Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.

    Article  PubMed  CAS  Google Scholar 

  • Coomans, A. and M. Claeys. 1998. Structure of the female reproductive system of Xiphinema americanum (Nematoda, Longidoridae). ­Fundam. Appl. Nematol. 21: 569–580.

    Google Scholar 

  • Coomans, A. and A. Willems. 1998. What are symbiotic bacteria doing in the ovaria of Xiphinema americanum-group subspecies? Nematologica 44: 323–326.

    Article  Google Scholar 

  • Coomans, A., T.T.M. Vandekerckhove and M. Claeys. 2000. Transovarial transmission of symbionts in Xiphinema brevicollum (Nematoda: Longidoridae). Nematology 2: 455–461.

    Google Scholar 

  • Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U. S. A. 97: 1813–1817.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer, R., J.A. Breeuwer and G.D. Hurst. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53: 71–102.

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove, T.T., A. Willems, M. Gillis and A. Coomans. 2000. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species ­(Nematoda, Longidoridae). Int. J. Syst. Evol. Microbiol. 50: 2197–2205.

    Article  PubMed  Google Scholar 

  • Vandekerckhove, T.T., A. Coomans, K. Cornelis, P. Baert and M. Gillis. 2002. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl. Environ. Microbiol. 68: 3121–3125.

    Article  PubMed  CAS  Google Scholar 

Further reading

  • Schlesner, H., C. Jenkins and J.T. Staley. 2005. The phylum Verrucomicrobia: a phylogenetically heterogeneous bacterial group. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn (edited by Dworkin). Springer, New York.

    Google Scholar 

Further reading

  • Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U. S. A. 102: 9170–9175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Hedlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Bergey’s Manual Trust

About this chapter

Cite this chapter

Hedlund, B.P. (2010). Phylum XXIII. Verrucomicrobia phyl. nov.. In: Krieg, N.R., et al. Bergey’s Manual® of Systematic Bacteriology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68572-4_12

Download citation

Publish with us

Policies and ethics