Advertisement

Phylum XXIII. Verrucomicrobia phyl. nov.

  • Brian P. Hedlund

Abstract

The phylum Verrucomicrobia is defined by phylogenetic analysis of 16S rRNA gene sequences of cultured strains and environmental clone sequences retrieved from a wide variety of environments. All cultivated members of the phylum stain Gram-negative; many have intracellular compartments bounded by internal membranes. Menaquinones are the dominant respiratory quinones; ubiquinones have not been detected. Most members are chemoheterotrophs, preferring carbohydrates including complex natural polysaccharides. Recently isolated members are thermoacidophilic methylotrophs.

Keywords

Type Strain Respiratory Quinone Diaminopimelic Acid Leucine Arylamidase Esterase Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. Alain, K., T. Holler, F. Musat, M. Elvert, T. Treude and M. Kruger. 2006. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 8: 574–590.PubMedCrossRefGoogle Scholar
  2. Cruz-Martinez, K., K.B. Suttle, E.L. Brodie, M.E. Power, G.L. Andersen and J.F. Banfield. 2009. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 3: 738–744.PubMedCrossRefGoogle Scholar
  3. Dojka, M.A., P. Hugenholtz, S.K. Haack and N.R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869–3877.PubMedGoogle Scholar
  4. Dunfield, P.F., A. Yuryev, P. Senin, A.V. Smirnova, M.B. Stott, S. Hou, B. Ly, J.H. Saw, Z. Zhou, Y. Ren, J. Wang, B.W. Mountain, M.A. Crowe, T.M. Weatherby, P.L. Bodelier, W. Liesack, L. Feng, L. Wang and M. Alam. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879–882.PubMedCrossRefGoogle Scholar
  5. Freitag, T.E. and J.I. Prosser. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 69: 1359–1371.PubMedCrossRefGoogle Scholar
  6. Frey, J.C., J.M. Rothman, A.N. Pell, J.B. Nizeyi, M.R. Cranfield and E.R. Angert. 2006. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72: 3788–3792.PubMedCrossRefGoogle Scholar
  7. Galperin, M.Y. 2008. New feel for new phyla. Environ. Microbiol. 10: 1927–1933.PubMedCrossRefGoogle Scholar
  8. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1996. Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int. J. Syst. Bacteriol. 46: 960–966.PubMedCrossRefGoogle Scholar
  9. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.PubMedCrossRefGoogle Scholar
  10. Hirayama, H., M. Sunamura, K. Takai, T. Nunoura, T. Noguchi, H. Oida, Y. Furushima, H. Yamamoto, T. Oomori and K. Horikoshi. 2007. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol. 73: 7642–7656.PubMedCrossRefGoogle Scholar
  11. Hou, S., K.S. Makarova, J.H. Saw, P. Senin, B.V. Ly, Z. Zhou, Y. Ren, J. Wang, M.Y. Galperin, M.V. Omelchenko, Y.I. Wolf, N. Yutin, E.V. Koonin, M.B. Stott, B.W. Mountain, M.A. Crowe, A.V. Smirnova, P.F. Dunfield, L. Feng, L. Wang and M. Alam. 2008. Complete genome sequence of the extremely acidophilic methanotroph ­isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Direct 3: 26.PubMedCrossRefGoogle Scholar
  12. Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.PubMedGoogle Scholar
  13. Humayoun, S.B., N. Bano and J.T. Hollibaugh. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl. Environ. Microbiol. 69: 1030–1042.PubMedCrossRefGoogle Scholar
  14. Islam, T., S. Jensen, L.J. Reigstad, Ø. Larsen and N.K. Birkeland. 2008. Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. U. S. A. 105: 300–304.PubMedCrossRefGoogle Scholar
  15. Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in ­libra­ries of 16S rRNA and 16S rRNA genes. Appl. Environ. ­Microbiol. 72: 1719–1728.PubMedCrossRefGoogle Scholar
  16. Lau, W.W. and E.V. Armbrust. 2006. Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Environ. Microbiol. 8: 1688–1702.PubMedCrossRefGoogle Scholar
  17. Lee, K.C., R.I. Webb, P.H. Janssen, P. Sangwan, T. Romeo, J.T. Staley and J.A. Fuerst. 2009. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol. 9: 5.PubMedCrossRefGoogle Scholar
  18. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.PubMedCrossRefGoogle Scholar
  19. Nercessian, O., E. Noyes, M.G. Kalyuzhnaya, M.E. Lidstrom and L. Chistoserdova. 2005. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71: 6885–6899.PubMedCrossRefGoogle Scholar
  20. Niemann, H., T. Losekann, D. de Beer, M. Elvert, T. Nadalig, K. ­Knittel, R. Amann, E.J. Sauter, M. Schluter, M. Klages, J.P. Foucher and A. Boetius. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854–858.PubMedCrossRefGoogle Scholar
  21. Penn, K., D. Wu, J.A. Eisen and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680–1683.PubMedCrossRefGoogle Scholar
  22. Pol, A., K. Heijmans, H.R. Harhangi, D. Tedesco, M.S.M. Jetten and H.J.M. Op den Camp. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874–878.PubMedCrossRefGoogle Scholar
  23. Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196PubMedCrossRefGoogle Scholar
  24. Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.PubMedCrossRefGoogle Scholar
  25. Wagner, M. and M. Horn. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241–249.PubMedCrossRefGoogle Scholar
  26. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.CrossRefGoogle Scholar
  27. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. Int. J. Syst. Bacteriol. 46: 625–626.CrossRefGoogle Scholar
  28. Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.PubMedCrossRefGoogle Scholar
  29. Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.PubMedCrossRefGoogle Scholar
  30. Hayashi, H., M. Sakamoto and Y. Benno. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol. Immunol. 46: 819–831.PubMedGoogle Scholar
  31. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.PubMedCrossRefGoogle Scholar
  32. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1998. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 64. Int. J. Syst. Bacteriol. 48: 327–328.CrossRefGoogle Scholar
  33. Hold, G.L., S.E. Pryde, V.J. Russell, E. Furnie and H.J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39: 33–39.PubMedCrossRefGoogle Scholar
  34. Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.PubMedGoogle Scholar
  35. Jenkins, C., R. Samudrala, I. Anderson, B.P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati and J.T. Staley. 2002. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. U.S.A. 99: 17049–17054.PubMedCrossRefGoogle Scholar
  36. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.PubMedCrossRefGoogle Scholar
  37. Mangin, I., R. Bonnet, L. Seksik, L. Rigottier-Gois, M. Sutren, Y. Bouhnik, C. Neut, M.D. Collins, J.-F. Colombel, P. Marteau and J. Dore. 2004. Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol. Ecol. 50: 25–36.PubMedCrossRefGoogle Scholar
  38. Nelson, K.E., S.H. Zinder, I. Hance, P. Burr, D. Odongo, D. Wasawo, A. Odenyo and R. Bishop. 2003. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5: 1212–1220.PubMedCrossRefGoogle Scholar
  39. Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U.S.A. 97: 1813–1817.PubMedCrossRefGoogle Scholar
  40. Pilhofer, M., A.P. Bauer, M. Schrallhammer, L. Richter, W. Ludwig, K.H. Schleifer and G. Petroni. 2007a. Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method. Nucleic Acids Res. 35: e135.PubMedCrossRefGoogle Scholar
  41. Pilhofer, M., G. Rosati, W. Ludwig, K.H. Schleifer and G. Petroni. 2007b. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24: 1439–1442.PubMedCrossRefGoogle Scholar
  42. Pilhofer, M., K. Rappl, C. Eckl, A.P. Bauer, W. Ludwig, K.H. Schleifer and G. Petroni. 2008. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190: 3192–3202.PubMedCrossRefGoogle Scholar
  43. Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.PubMedCrossRefGoogle Scholar
  44. Salzman, N.H., H. de Jong, Y. Paterson, H.J. Harmsen, G.W. Welling and N.A. Bos. 2002. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148: 3651–3660.PubMedGoogle Scholar
  45. Scheuermayer, M., T.A. Gulder, G. Bringmann and U. Hentschel. 2006. Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56: 2119–2124.PubMedCrossRefGoogle Scholar
  46. Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U.S.A. 102: 9170–9175.PubMedCrossRefGoogle Scholar
  47. Sontag, C.A., J.T. Staley and H.P. Erickson. 2005. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell. Biol. 169: 233–238.PubMedCrossRefGoogle Scholar
  48. Sontag, C.A., H. Sage and H.P. Erickson. 2009. BtubA–BtubB heterodimer is an essential intermediate in protofilament assembly. PLoS One 4: e7253.PubMedCrossRefGoogle Scholar
  49. Takeda, M., A. Yoneya, Y. Miyazaki, K. Kondo, H. Makita, M. Kondoh, I. Suzuki and J. Koizumi. 2008. Prosthecobacter fluviatilis sp. nov., which lacks the bacterial tubulin btubA and btubB genes. Int. J. Syst. Evol. Microbiol. 58: 1561–1565.PubMedCrossRefGoogle Scholar
  50. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.CrossRefGoogle Scholar
  51. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. Int. J. Syst. Bacteriol. 46: 625–626.CrossRefGoogle Scholar
  52. Yee, B., F.F. Lafi, B. Oakley, J.T. Staley and J.A. Fuerst. 2007. A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species. BMC Evol. Biol. 7: 37.PubMedCrossRefGoogle Scholar
  53. Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.PubMedCrossRefGoogle Scholar
  54. Schlesner, H. 1987. Verrucomicrobium spinosum gen. nov., sp. nov., a fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10: 54–56.CrossRefGoogle Scholar
  55. Schlesner, H. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 25. Int. J. Syst. Bacteriol. 38: 220–222.CrossRefGoogle Scholar
  56. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.CrossRefGoogle Scholar
  57. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. Int. J. Syst. Bacteriol. 46: 625–626.CrossRefGoogle Scholar
  58. Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.PubMedCrossRefGoogle Scholar

Further reading

  1. Schlesner, H., C. Jenkins and J.T. Staley. 2005. The phylum Verrucomicrobia: a phylogenetically heterogeneous bacterial group. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn (edited by Dworkin). Springer, New York.Google Scholar

Further reading

  1. Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U. S. A. 102: 9170–9175.PubMedCrossRefGoogle Scholar
  1. Albrecht, W., A. Fischer, J. Smida and E. Stackebrandt. 1987. Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent. Syst. Appl. Microbiol. 10: 57–62.CrossRefGoogle Scholar
  2. Bomar, D. and E. Stackebrandt. 1987. 5S rRNA sequences from Nitrobacter winogradskyi, Caulobacter crescentus, Stella humosa and Verrucomicrobium spinosum. Nucleic Acids Res. 15: 9597.PubMedCrossRefGoogle Scholar
  3. Cohen-Bazire, G., W.R. Sistrom and R.Y. Stanier. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell Phys. 49: 25–68.CrossRefGoogle Scholar
  4. de Bont, J.A.M., J.T. Staley and H.S. Pankratz. 1970. Isolation and description of a non-motile, fusiform, stalked bacterium, a representative of a new genus. Antonie van Leeuwenhoek 36: 397–407.PubMedCrossRefGoogle Scholar
  5. Garrity, G.M. and J.G. Holt. 2001. The Road Map to the Manual. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria (edited by Boone, Castenholz and Garrity). Springer, New York, pp. 119–166.Google Scholar
  6. Gorlenko, V.M. 1970. A new phototrophic green sulphur bacterium: Prosthecochloris aestuarii nov. gen. nov. spec. Z. Allg. Mikrobiol. 10: 147–149.PubMedCrossRefGoogle Scholar
  7. Gorlenko, V.M. and E.V. Lebedeva. 1971. New green sulphur bacteria with appendages [in Russian, with English summary]. Mikrobiologya 40: 1035–1039.Google Scholar
  8. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1996. Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int. J. Syst. Bacteriol. 46: 960–966.PubMedCrossRefGoogle Scholar
  9. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.PubMedCrossRefGoogle Scholar
  10. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1998. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 64. Int. J. Syst. Bacteriol. 48: 327–328.CrossRefGoogle Scholar
  11. Henrici, A.T. and D.E. Johnson. 1935. Studies of freshwater bacteria: II. Stalked bacteria, a new order of Schizomycetes. J. Bacteriol. 30: 61–93.PubMedGoogle Scholar
  12. Hirsch, P., M. Müller and H. Schlesner. 1977. New aquatic budding and prosthecate bacteria and their taxonomic position. In Symposium on Aquatic Microbiology, Lancaster, UK. Academic Press, ­London, pp. 107–133.Google Scholar
  13. Houwink, A.L. 1951. Caulobacter versus Bacillus spec. div. Nature 168: 654–655.PubMedCrossRefGoogle Scholar
  14. Jenkins, C., R. Samudrala, I. Anderson, B.P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati and J.T. Staley. 2002. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. U. S. A. 99: 17049–17054.PubMedCrossRefGoogle Scholar
  15. Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U. S. A. 97: 1813–1817.PubMedCrossRefGoogle Scholar
  16. Pilhofer, M., G. Rosati, W. Ludwig, K.H. Schleifer and G. Petroni. 2007. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24: 1439–1442.PubMedCrossRefGoogle Scholar
  17. Schlesner, H. 1987. Verrucomicrobium spinosum gen. nov., sp. nov., a ­fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10: 54–56.CrossRefGoogle Scholar
  18. Schlesner, H. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 25. Int. J. Syst. Bacteriol. 38: 220–222.CrossRefGoogle Scholar
  19. Schlesner, H. 1992. The genus Verrucomicrobium. In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, vol. 4 (edited by Balows, Dworkin, Harder, Schleifer and Trüper). Springer, New York, pp. 3806–3808.Google Scholar
  20. Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U. S. A. 102: 9170–9175.PubMedCrossRefGoogle Scholar
  21. Sittig, M. and H. Schlesner. 1993. Chemotaxonomic investigation of various prosthecate and or budding bacteria. Syst. Appl. Microbiol. 16: 92–103.CrossRefGoogle Scholar
  22. Sontag, C.A., J.T. Staley and H.P. Erickson. 2005. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell. Biol. 169: 233–238.PubMedCrossRefGoogle Scholar
  23. Staley, J.T. 1968. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95: 1921–1942.PubMedGoogle Scholar
  24. Staley, J.T., J.A.M. de Bont and K. de Jonge. 1976. Prosthecobacter ­fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van Leeuwenhoek 42: 333–342.PubMedCrossRefGoogle Scholar
  25. Staley, J.T., J.A.M. de Bont and K. de Jonge. 1980. Prosthecobacter ­fusiformis gen. and sp. nov., nom. rev. Int. J. Syst. Bacteriol. 30: 595.CrossRefGoogle Scholar
  26. Staley, J.T., H. Bouzek and C. Jenkins. 2005. Eukaryotic signature ­proteins of Prosthecobacter dejongeii and Gemmata sp. Wa-1 as revealed by in silico analysis. FEMS Microbiol. Lett. 243: 9–14.PubMedCrossRefGoogle Scholar
  27. Vasilyeva, L.V. 1985. Stella, a new genus of soil prosthecobacteria, with proposals for Stella humosa sp. nov. and Stella vacuolata sp. nov. Int. J. Syst. Bacteriol. 35: 518–521.CrossRefGoogle Scholar
  28. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.CrossRefGoogle Scholar
  29. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 57. In Int. J. Syst. Bacteriol. 46: 625–626.CrossRefGoogle Scholar
  30. Ward-Rainey, N., F.A. Rainey and E. Stackebrandt. 1997. The presence of a dnaK (HSP70) multigene family in members of the orders ­Planctomycetales and Verrucomicrobiales. J. Bacteriol. 179: 6360–6366.PubMedGoogle Scholar
  31. Ward, N.L., F.A. Rainey, B.P. Hedlund, J.T. Staley, W. Ludwig and E. Stackebrandt. 2000. Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny. Int. J. Syst. Evol. Microbiol. 50: 1965–1972.PubMedCrossRefGoogle Scholar
  32. Yoon, J., Y. Matsuo, K. Adachi, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2008. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int. J. Syst. Evol. Microbiol. 58: 998–1007.PubMedCrossRefGoogle Scholar
  33. Derrien, M., E.E. Vaughan, C.M. Plugge and W.M. de Vos. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54: 1469–1476.CrossRefGoogle Scholar
  34. Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.PubMedCrossRefGoogle Scholar
  35. Hayashi, H., M. Sakamoto and Y. Benno. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol. Immunol. 46: 819–831.PubMedGoogle Scholar
  36. Hedlund, B.P., J.J. Gosink and J.T. Staley. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.PubMedCrossRefGoogle Scholar
  37. Hold, G.L., S.E. Pryde, V.J. Russell, E. Furnie and H.J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39: 33–39.PubMedCrossRefGoogle Scholar
  38. Hoskins, L.C. and E.T. Boulding. 1981. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J. Clin. Invest. 67: 163–172.PubMedCrossRefGoogle Scholar
  39. Mangin, I., R. Bonnet, L. Seksik, L. Rigottier-Gois, M. Sutren, Y. ­Bouhnik, C. Neut, M.D. Collins, J-F. Colombel, P. Marteau and J. Dore. 2004. Molecular inventory of faecal microflora in patients with Crohn’s ­disease. FEMS Microbiol. Ecol. 50: 25–36.PubMedCrossRefGoogle Scholar
  40. Nelson, K.E., S.H. Zinder, I. Hance, P. Burr, D. Odongo, D. Wasawo, A. Odenyo and R. Bishop. 2003. Phylogenetic analysis of the ­microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5: 1212–1220.PubMedCrossRefGoogle Scholar
  41. Plugge, C.M. 2005. Anoxic media design, preparation, and considerations. In Methods in Enzymology, vol. 397. Academic Press, New York, pp. 3–16.Google Scholar
  42. Salzman, N.H., H. de Jong, Y. Paterson, H.J. Harmsen, G.W. Welling and N.A. Bos. 2002. Analysis of 16S libraries of mouse gastrointes­tinal microflora reveals a large new group of mouse intestinal ­bacteria. Microbiology 148: 3651–3660.PubMedGoogle Scholar
  43. Schlesner, H. 1987. Verrucomicrobium spinosum gen. nov., sp. nov., a ­fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10: 54–56.CrossRefGoogle Scholar
  44. Staley, J.T., J.A.M. de Bont and K. de Jonge. 1976. Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van ­Leeuwenhoek 42: 333–342.PubMedCrossRefGoogle Scholar
  45. Kasai, H., A. Katsuta, H. Sekiguchi, S. Matsuda, K. Adachi, K. Shindo, J. Yoon, A. Yokota and Y. Shizuri. 2007. Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 1630–1634.PubMedCrossRefGoogle Scholar
  46. Scheuermayer, M., T.A. Gulder, G. Bringmann and U. Hentschel. 2006. Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56: 2119–2124.PubMedCrossRefGoogle Scholar
  47. Shindo, K., E. Asagi, A. Sano, E. Hotta, N. Minemura, K. Mikami, E. Tamesada, N. Misawa and T. Maoka. 2008. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-­carotenoic acids produced by a new marine bacterium Rubritalea squalenifaciens. J. Antibiot. (Tokyo) 61: 185–191.CrossRefGoogle Scholar
  48. Yoon, J., Y. Matsuo, S. Matsuda, K. Adachi, H. Kasai and A. Yokota. 2007. Rubritalea spongiae sp. nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’, isolated from marine animals. Int. J. Syst. Evol. Microbiol. 57: 2337–2343.PubMedCrossRefGoogle Scholar
  49. Yoon, J., Y. Matsuo, S. Matsuda, K. Adachi, H. Kasai and A. Yokota. 2008. Rubritalea sabuli sp. nov., a carotenoid- and squalene-­producing ­member of the family Verrucomicrobiaceae, isolated from marine ­sediment. Int. J. Syst. Evol. Microbiol. 58: 992–997.PubMedCrossRefGoogle Scholar
  50. Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ­‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.PubMedCrossRefGoogle Scholar
  51. DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.U. ­Frigaard, A. Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm and D.M. Karl. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311: 496–503.PubMedCrossRefGoogle Scholar
  52. Glöckner, F.O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl. Environ. Microbiol. 66: 5053–5065.PubMedCrossRefGoogle Scholar
  53. Holmes, A.J., J. Bowyer, M.P. Holley, M. O’Donoghue, M. Montgomery and M.R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33: 111–120.PubMedCrossRefGoogle Scholar
  54. Hongoh, Y., P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn and T. Kudo. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and ­termite host. Appl. Environ. Microbiol. 71: 6590–6599.PubMedCrossRefGoogle Scholar
  55. Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.PubMedGoogle Scholar
  56. Jenkins, C., R. Samudrala, I. Anderson, B.P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati and J.T. Staley. 2002. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. U. S. A. 99: 17049–17054.PubMedCrossRefGoogle Scholar
  57. Löwe, J., F. van den Ent and L.A. Amos. 2004. Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct. 33: 177–198.PubMedCrossRefGoogle Scholar
  58. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, ­Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. ­Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.PubMedCrossRefGoogle Scholar
  59. Morales, S.E., P.J. Mouser, N. Ward, S.P. Hudman, N.J. Gotelli, D.S. Ross and T.A. Lewis. 2006. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microb. Ecol. 52: 34–44.PubMedCrossRefGoogle Scholar
  60. Nakajima, H., Y. Hongoh, R. Usami, T. Kudo and M. Ohkuma. 2005. Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol. Ecol. 54: 247–255.PubMedCrossRefGoogle Scholar
  61. Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U. S. A. 97: 1813–1817.PubMedCrossRefGoogle Scholar
  62. Pilhofer, M., G. Rosati, W. Ludwig, K.H. Schleifer and G. Petroni. 2007. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24: 1439–1442.PubMedCrossRefGoogle Scholar
  63. Pilhofer, M., K. Rappl, C. Eckl, A.P. Bauer, W. Ludwig, K.H. Schleifer and G. Petroni. 2008. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190: 3192–3202.PubMedCrossRefGoogle Scholar
  64. Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.PubMedCrossRefGoogle Scholar
  65. Sakai, T., K. Ishizuka and I. Kato. 2003a. Isolation and characterization of a fucoidan-degrading marine bacterium. Mar. Biotechnol. (N.Y.) 5: 409–416.CrossRefGoogle Scholar
  66. Sakai, T., K. Ishizuka, K. Shimanaka, K. Ikai and I. Kato. 2003b. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar. Biotechnol. (N.Y.) 5: 536–544.CrossRefGoogle Scholar
  67. Schafer, H., P. Servais and G. Muyzer. 2000. Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch. Microbiol. 173: 138–145.PubMedCrossRefGoogle Scholar
  68. Schlieper, D., M.A. Oliva, J.M. Andreu and J. Lowe. 2005. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. U. S. A. 102: 9170–9175.PubMedCrossRefGoogle Scholar
  69. Sekar, R., D.K. Mills, E.R. Remily, J.D. Voss and L.L. Richardson. 2006. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72: 5963–5973.PubMedCrossRefGoogle Scholar
  70. Shinzato, N., M. Muramatsu, T. Matsui and Y. Watanabe. 2005. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci. Biotechnol. Biochem. 69: 1145–1155.PubMedCrossRefGoogle Scholar
  71. Sontag, C.A., J.T. Staley and H.P. Erickson. 2005. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell. Biol. 169: 233–238.PubMedCrossRefGoogle Scholar
  72. Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748–4755.PubMedCrossRefGoogle Scholar
  73. Suzuki, M.T., O. Beja, L.T. Taylor and E.F. Delong. 2001. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ. Microbiol. 3: 323–331.PubMedCrossRefGoogle Scholar
  74. Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Namakura, R.I. Aminov and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6: 273–284.CrossRefGoogle Scholar
  75. Chin, K.J., W. Liesack and P.H. Janssen. 2001. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51: 1965–1968.PubMedCrossRefGoogle Scholar
  76. Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘­Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.PubMedCrossRefGoogle Scholar
  77. Chin, K.J. and P.H. Janssen. 2002. Propionate formation by Opitutus terrae in pure culture and in mixed culture with a hydrogenotrophic methanogen and implications for carbon fluxes in anoxic rice paddy soil. Appl. Environ. Microbiol. 68: 2089–2092.PubMedCrossRefGoogle Scholar
  78. Chin, K.J., D. Hahn, U. Hengstmann, W. Liesack and P.H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65: 5042–5049.PubMedGoogle Scholar
  79. Chin, K.J., W. Liesack and P.H. Janssen. 2001. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51: 1965–1968.PubMedCrossRefGoogle Scholar
  80. Hugenholtz, P., C. Pitulle, K.L. Hershberger and N.R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366–376.PubMedGoogle Scholar
  81. Janssen, P.H. 1998. Pathway of glucose catabolism by strain VeGlc2, an anaerobe belonging to the Verrucomicrobiales lineage of bacterial descent. Appl. Environ. Microbiol. 64: 4830–4833.PubMedGoogle Scholar
  82. Janssen, P.H., A. Schuhmann, E. Mörschel and F.A. Rainey. 1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl. Environ. Microbiol. 63: 1382–1388.PubMedGoogle Scholar
  83. Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.PubMedCrossRefGoogle Scholar
  84. Shieh, W.Y. and W.D. Jean. 1998. Alterococcus agarolyticus, gen.nov., sp.nov., a halophilic thermophilic bacterium capable of agar degradation. Can. J. Microbiol. 44: 637–645.PubMedGoogle Scholar
  85. Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748–4475.PubMedCrossRefGoogle Scholar
  86. Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘­Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.PubMedCrossRefGoogle Scholar
  87. Choo, Y.J., K. Lee, J. Song and J.C. Cho. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57: 532–537.PubMedCrossRefGoogle Scholar
  88. Harper, J.J. and G.H.G. Davis. 1979. Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int. J. Syst. Bacteriol. 29: 56–58.CrossRefGoogle Scholar
  89. Hayakawa, M. and H. Nonomura. 1987. Humic acid-vitamine agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65: 501–509.CrossRefGoogle Scholar
  90. Lyman, J. and R.H. Fleming. 1940. Composition of sea water. J. Mar. Res. 3: 134–146.Google Scholar
  91. Schleifer, K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407–477.PubMedGoogle Scholar
  92. Yasumoto-Hirose, M., M. Nishijima, M.K. Ngirchechol, K. Kanoh, Y. Shizuri and W. Miki. 2006. Isolation of marine bacteria by in situ ­culture on media-supplemented polyurethane foam. Mar. ­Biotechnol. (N.Y.) 8: 227–237.CrossRefGoogle Scholar
  93. Yokota, A., T. Tamura, T. Nishii and T. Hasegawa. 1993. Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic, Gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int. J. Syst. Bacteriol. 43: 52–57.CrossRefGoogle Scholar
  94. Yoon, J., Y. Matsuo, S. Matsuda, K. Adachi, H. Kasai and A. Yokota. 2007a. Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’, isolated from marine sand. Int. J. Syst. Evol. Microbiol. 57: 2067–2072.PubMedCrossRefGoogle Scholar
  95. Yoon, J., N. Oku, S. Matsuda, H. Kasai and A. Yokota. 2007b. Pelagicoccus croceus sp. nov., a novel marine member of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’ isolated from seagrass. Int. J. Syst. Evol. Microbiol. 57: 2874–2880.PubMedCrossRefGoogle Scholar
  96. Yoon, J., M. Yasumoto-Hirose, A. Katsuta, H. Sekiguchi, S. Matsuda, H. Kasai and A. Yokota. 2007c. Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum ‘Verrucomicrobia’ isolated from seawater in Japan. Int. J. Syst. Evol. Microbiol. 57: 959–963.PubMedCrossRefGoogle Scholar
  97. Yoon, J., M. Yasumoto-Hirose, Y. Matsuo, M. Nozawa, S. Matsuda, H. Kasai and A. Yokota. 2007d. Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum ‘Verrucomicrobia’, isolated from seawater by in situ cultivation. Int. J. Syst. Evol. Microbiol. 57: 1377–1385.PubMedCrossRefGoogle Scholar
  98. Axelrood, P.E., M.L. Chow, C.C. Radomski, J.M. McDermott andJ. Davies. 2002. Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol. 48: 655–674.Google Scholar
  99. Borneman, J. and E.W. Triplett. 1997. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63: 2647–2653.Google Scholar
  100. Buckley, D.H. and T.M. Schmidt. 2001. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol. Ecol. 35: 105–112.PubMedCrossRefGoogle Scholar
  101. Buckley, D.H. and T.M. Schmidt. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5: 441–452.PubMedCrossRefGoogle Scholar
  102. Chan, O.C., X. Yang, Y. Fu, Z. Feng, L. Sha, P. Casper and X. Zou. 2006. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol. Ecol. 58: 247–259.PubMedCrossRefGoogle Scholar
  103. Chow, M.L., C.C. Radomski, J.M. McDermott, J. Davies and P.E. ­Axelrood. 2002. Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol. Ecol. 42: 347–357.Google Scholar
  104. Dojka, M.A., P. Hugenholtz, S.K. Haack and N.R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent- contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869–3877.PubMedGoogle Scholar
  105. Dunbar, J., S.M. Barns, L.O. Ticknor and C.R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68: 3035–3045Google Scholar
  106. Elshahed, M.S., N.H. Youssef, A.M. Spain, C. Sheik, F.Z. Najar, L.O. Sukharnikov, B.A. Roe, J.P. Davis, P.D. Schloss, V.L. Bailey and L.R. Krumholz. 2008. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl. Environ. Microbiol. 74: 5422–5428.PubMedCrossRefGoogle Scholar
  107. Felske, A. and A.D. Akkermans. 1998. Prominent occurrence of ­ribosomes from an uncultured bacterium of the Verrucomicrobiales cluster in grassland soils. Lett. Appl. Microbiol. 26: 219–223.PubMedCrossRefGoogle Scholar
  108. Felske, A., A.D. Akkermans and W.M. de Vos. 1998. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. Appl. Environ. Microbiol. 64: 4581–4587.PubMedGoogle Scholar
  109. Felske, A., A. Wolterink, R. Van Lis, W.M. de Vos and A.D. Akkermans. 2000. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes. Appl. Environ. Microbiol. 66: 3998–4003.PubMedCrossRefGoogle Scholar
  110. Fulthorpe, R.R., L.F. Roesch, A. Riva and E.W. Triplett. 2008. Distantly sampled soils carry few species in common. ISME J. 2: 901–910.PubMedCrossRefGoogle Scholar
  111. Furlong, M.A., D.R. Singleton, D.C. Coleman and W.B. Whitman. 2002. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68: 1265–1279.Google Scholar
  112. Graff, A. and R. Conrad. 2005. Impact of flooding on soil bacterial communities associated with poplar (Populus sp.) trees. FEMS Microbiol. Ecol. 53: 401–415.PubMedCrossRefGoogle Scholar
  113. Holmes, A.J., J. Bowyer, M.P. Holley, M. O’Donoghue, M. Montgomery and M.R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in ­Australian arid soils. FEMS Microbiol. Ecol. 33: 111–120.Google Scholar
  114. Hugenholtz, P., B.M. Goebel and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.PubMedGoogle Scholar
  115. Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391–2396.Google Scholar
  116. Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719–1728.PubMedCrossRefGoogle Scholar
  117. Kim, J.-S., Sparovek, G., Longo, R.M., De Melo, W.J. and D. Crowley. 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39: 684–690.CrossRefGoogle Scholar
  118. Lauber, C.L., M. Hamady, R. Knight and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75: 5111–5120.PubMedCrossRefGoogle Scholar
  119. Lee, S.Y., J. Bollinger, D. Bezdicek and A. Ogram. 1996. Estimation of the abundance of an uncultured soil bacterial strain by a ­competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787–3793.PubMedGoogle Scholar
  120. Liles, M.R., B.F. Manske, S.B. Bintrim, J. Handelsman and R.M. Goodman. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69: 2684–2691.Google Scholar
  121. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.PubMedCrossRefGoogle Scholar
  122. Macalady, J.L., E.H. Lyon, B. Koffman, L.K. Albertson, K. Meyer, S. Galdenzi and S. Mariani. 2006. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl. Environ. Microbiol. 72: 5596–5609.PubMedCrossRefGoogle Scholar
  123. Macrae, A., D.L. Rimmer and A.G. O’Donnell. 2000. Novel bacterial diversity recovered from the rhizosphere of oilseed rape (Brassica napus) determined by the analysis of 16S ribosomal DNA. Antonie van Leeuwenhoek 78: 13–21.Google Scholar
  124. Newton, R.J., A.D. Kent, E.W. Triplett and K.D. McMahon. 2006. ­Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 8: 956–970.PubMedCrossRefGoogle Scholar
  125. Ochsenreiter, T., D. Selezi, A. Quaiser, L. Bonch-Osmolovskaya and C. Schleper. 2003. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5: 787–797.Google Scholar
  126. Pruesse, E., C. Quast, K. Knittel, B. Fuchs, W. Ludwig, J. Peplies and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned rRNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188–7196.PubMedCrossRefGoogle Scholar
  127. Roesch, L.F., R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, S.H. Daroub, F.A. Camargo, W.G. Farmerie and E.W. Triplett. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1: 283–290.PubMedGoogle Scholar
  128. Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.PubMedCrossRefGoogle Scholar
  129. Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.PubMedCrossRefGoogle Scholar
  130. Tringe, S.G., C. von Mering, A. Kobayashi, A.A. Salamov, K. Chen, H.W. Chang, M. Podar, J.M. Short, E.J. Mathur, J.C. Detter, P. Bork, P. Hugenholtz and E.M. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308: 554–557.PubMedCrossRefGoogle Scholar
  131. Vandekerckhove, T.T., A. Willems, M. Gillis and A. Coomans. 2000. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species ­(Nematoda, Longidoridae). Int. J. Syst. Evol. Microbiol. 50: 2197–2205.PubMedCrossRefGoogle Scholar
  132. Vandekerckhove, T.T., A. Coomans, K. Cornelis, P. Baert and M. Gillis. 2002. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl. Environ. Microbiol. 68: 3121–3125.PubMedCrossRefGoogle Scholar
  133. Ward-Rainey, N., F.A. Rainey, H. Schlesner and E. Stackebrandt. 1995. Assignment of a hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141: 3247–3250.Google Scholar
  134. Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.PubMedCrossRefGoogle Scholar
  135. Coomans, A. and M. Claeys. 1998. Structure of the female reproductive system of Xiphinema americanum (Nematoda, Longidoridae). ­Fundam. Appl. Nematol. 21: 569–580.Google Scholar
  136. Coomans, A. and A. Willems. 1998. What are symbiotic bacteria doing in the ovaria of Xiphinema americanum-group subspecies? Nematologica 44: 323–326.CrossRefGoogle Scholar
  137. Coomans, A., T.T.M. Vandekerckhove and M. Claeys. 2000. Transovarial transmission of symbionts in Xiphinema brevicollum (Nematoda: Longidoridae). Nematology 2: 455–461.Google Scholar
  138. Petroni, G., S. Spring, K.H. Schleifer, F. Verni and G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. U. S. A. 97: 1813–1817.PubMedCrossRefGoogle Scholar
  139. Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.PubMedCrossRefGoogle Scholar
  140. Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.PubMedCrossRefGoogle Scholar
  141. Stouthamer, R., J.A. Breeuwer and G.D. Hurst. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53: 71–102.PubMedCrossRefGoogle Scholar
  142. Vandekerckhove, T.T., A. Willems, M. Gillis and A. Coomans. 2000. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species ­(Nematoda, Longidoridae). Int. J. Syst. Evol. Microbiol. 50: 2197–2205.PubMedCrossRefGoogle Scholar
  143. Vandekerckhove, T.T., A. Coomans, K. Cornelis, P. Baert and M. Gillis. 2002. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl. Environ. Microbiol. 68: 3121–3125.PubMedCrossRefGoogle Scholar

Copyright information

© Bergey’s Manual Trust 2010

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of Nevada Las VegasLas VegasUSA

Personalised recommendations