Advertisement

Phylum XXII. Lentisphaerae Cho, Vergin, Morris and Giovannoni 2004a, 1005VP (Effective publication: Cho, Vergin, Morris and Giovannoni 2004b, 617.)

  • Brian P. Hedlund
  • Jang-Cheon Cho
  • Muriel Derrien
  • Kyle C. Costa

Abstract

The phylum Lentisphaerae is defined by phylogenetic analysis based on 16S rRNA gene sequences of cultured strains from seawater and human feces and environmental clone sequences retrieved mainly from marine habitats, freshwater habitats, anaerobic digesters, and vertebrate feces. The phylum includes two bacterial genera, Lentisphaera and Victivallis, both of which are chemo-organotrophic cocci with a Gram-negative cell structure. Saccharolytic, only able to use mono- and di-­saccharides, sugar alcohols, or sugar acids. Both produce extracellular slime material.

Keywords

Anaerobic Digester Marine Agar Utilize Amino Acid Coccoid Cell Marine Microbial Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alain, K., M. Olagnon, D. Desbruyeres, A. Page, G. Barbier, S.K. Juniper, J. Quellerou and M.A. Cambon-Bonavita. 2002. Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol. Ecol. 42: 463–476.PubMedCrossRefGoogle Scholar
  2. Ashelford, K.E., N.A. Chuzhanova, J.C. Fry, A.J. Jones and A.J. ­Weightman. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72: 5734–5741.PubMedCrossRefGoogle Scholar
  3. Briee, C., D. Moreira and P. Lopez-Garcia. 2007. Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res. Microbiol. 158: 213–227.PubMedCrossRefGoogle Scholar
  4. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004a. In ­Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 98. Int. J. Syst. Evol. Microbiol. 54: 1005–1006.CrossRefGoogle Scholar
  5. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004b. ­Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.PubMedCrossRefGoogle Scholar
  6. Chouari, R., D. Le Paslier, C. Dauga, P. Daegelen, J. Weissenbach and A. Sghir. 2005. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl. Environ. Microbiol. 71: 2145–2153.PubMedCrossRefGoogle Scholar
  7. Crump, B.C. and J.E. Hobbie. 2005. Synchrony and seasonality in ­bacterioplankton communities of two temperate rivers. Limnol. Oceanogr. 50: 1718–1729.CrossRefGoogle Scholar
  8. Delbes, C., R. Moletta and J.J. Godon. 2000. Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction – single-strand conformation ­polymorphism analysis. Environ. Microbiol. 2: 506–515.PubMedCrossRefGoogle Scholar
  9. Eiler, A. and S. Bertilsson. 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6: 1228–1243.PubMedCrossRefGoogle Scholar
  10. Elshahed, M.S., N.H. Youssef, Q. Luo, F.Z. Najar, B.A. Roe, T.M. Sisk, S.I. Buhring, K.U. Hinrichs and L.R. Krumholz. 2007. Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl. Environ. Microbiol. 73: 4707–4716.PubMedCrossRefGoogle Scholar
  11. Frey, J.C., J.M. Rothman, A.N. Pell, J.B. Nizeyi, M.R. Cranfield and E.R. Angert. 2006. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72: 3788–3792.PubMedCrossRefGoogle Scholar
  12. Gordon, J.J., E. Zumstein, P. Dabert, F. Habouzit and R. Moletta. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63: 2802–2813.Google Scholar
  13. Humayoun, S.B., N. Bano and J.T. Hollibaugh. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl. Environ. Microbiol. 69: 1030–1042.PubMedCrossRefGoogle Scholar
  14. Isenbarger, T.A., M. Finney, C. Rios-Velazquez, J. Handelsman andG. Ruvkun. 2008. Miniprimer PCR, a new lens for viewing the microbial world. Appl. Environ. Microbiol. 74: 840–849.PubMedCrossRefGoogle Scholar
  15. Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391–2396.PubMedCrossRefGoogle Scholar
  16. Lee, S.Y., J. Bollinger, D. Bezdicek and A. Ogram. 1996. Estimation of the abundance of an uncultured soil bacterial strain by a ­competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787–3793.PubMedGoogle Scholar
  17. Li, L., C. Kato and K. Horikoshi. 1999. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8: 659–677.CrossRefGoogle Scholar
  18. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.PubMedCrossRefGoogle Scholar
  19. Nercessian, O., E. Noyes, M.G. Kalyuzhnaya, M.E. Lidstrom and L. Chistoserdova. 2005. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71: 6885–6899.PubMedCrossRefGoogle Scholar
  20. Noll, M., D. Matthies, P. Frenzel, M. Derakshani and W. Liesack. 2005. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ. Microbiol. 7: 382–395.PubMedCrossRefGoogle Scholar
  21. Rappe, M.S. and S.J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369–394.PubMedCrossRefGoogle Scholar
  22. Sangwan, P., X. Chen, P. Hugenholtz and P.H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 5875–5881.PubMedCrossRefGoogle Scholar
  23. Sangwan, P., S. Kovac, K.E. Davis, M. Sait and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71: 8402–8410.PubMedCrossRefGoogle Scholar
  24. Scupham, A.J. 2007. Succession in the intestinal microbiota of preadolescent turkeys. FEMS Microbiol. Ecol. 60: 136–147.PubMedCrossRefGoogle Scholar
  25. Wagner, M. and M. Horn. 2006. The Planctomycetes, Verrucomicrobia, ­Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241–249.PubMedCrossRefGoogle Scholar
  26. Zhu, P., Q. Li and G. Wang. 2008. Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. Microb. Ecol. 55: 406–414.PubMedCrossRefGoogle Scholar
  27. Zoetendal, E.G., C.M. Plugge, A.D. Akkermans and W.M. de Vos. 2003. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int. J. Syst. Evol. Microbiol. 53: 211–215.PubMedCrossRefGoogle Scholar
  28. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004a. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 98. Int. J. Syst. Evol. Microbiol. 54: 1005–1006.CrossRefGoogle Scholar
  29. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004b. ­Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel ­bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.PubMedCrossRefGoogle Scholar
  30. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004a. In ­Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 98. Int. J. Syst. Evol. Microbiol. 54: 1005–1006.CrossRefGoogle Scholar
  31. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004b. ­Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.PubMedCrossRefGoogle Scholar
  32. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004a. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 98. Int. J. Syst. Evol. Microbiol. 54: 1005–1006.CrossRefGoogle Scholar
  33. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004b. ­Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel ­bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.PubMedCrossRefGoogle Scholar
  34. Waterbury, J.B., S.W. Watson, F.W. Valois and D.G. Franks. 1986. ­Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In Canadian Bulletin Fisheries and Aquatic Sciences, vol. 214 (edited by Platt and Li). Department of Fisheries and Oceans, Ottawa, pp. 71–120.Google Scholar
  35. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004a. In ­Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 98. Int. J. Syst. Evol. Microbiol. 54: 1005–1006.CrossRefGoogle Scholar
  36. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004b. ­Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.PubMedCrossRefGoogle Scholar
  37. Zoetendal, E.G., C.M. Plugge, A.D. Akkermans and W.M. de Vos. 2003. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int. J. Syst. Evol. Microbiol. 53: 211–215.PubMedCrossRefGoogle Scholar
  38. Cho, J.C., K.L. Vergin, R.M. Morris and S.J. Giovannoni. 2004. ­Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611–621.PubMedCrossRefGoogle Scholar
  39. Godon, J.J., E. Zumstein, P. Dabert, F. Habouzit and R. Moletta. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63: 2802–2813.PubMedGoogle Scholar
  40. Kamlage, B., L. Hartmann, B. Gruhl and M. Blaut. 1999. Intestinal microorganisms do not supply associated gnotobiotic rats with ­conjugated linoleic acid. J. Nutr. 129: 2212–2217.PubMedGoogle Scholar
  41. Plugge, C.M. 2005. Anoxic media design, preparation, and considerations. In Methods in Enzymology, vol. 397. Academic Press, New York, NY, pp. 3–16.Google Scholar
  42. Zoetendal, E.G., C.M. Plugge, A.D. Akkermans and W.M. de Vos. 2003. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int. J. Syst. Evol. Microbiol. 53: 211–215.PubMedCrossRefGoogle Scholar

Copyright information

© Bergey’s Manual Trust 2010

Authors and Affiliations

  • Brian P. Hedlund
    • 1
  • Jang-Cheon Cho
  • Muriel Derrien
  • Kyle C. Costa
  1. 1.School of Life SciencesUniversity of Nevada Las VegasLas VegasUSA

Personalised recommendations