Heritable Disorders of Connective Tissue

  • Reed Edwin Pyeritz


The molecular composition and organization of connective tissue, known as the extracellular matrix, are extraordinarily complex. Much remains unknown about the number, structure, map location, and regulation of genes that control synthesis, organization, and metabolism of this ubiquitous tissue. However, the genes that specify several hundred proteins involved in connective tissue metabolism and skeletal development have been mapped (1). Mutations in the genes for these proteins cause a variety of disorders. The heritable disorders of connective tissue (HDCT) follow Mendel’s laws, but like many such disorders, show both considerable variability within and among families and genetic heterogeneity (2,3).


Carpal Tunnel Syndrome Osteogenesis Imperfecta Marfan Syndrome Autosomal Recessive Inheritance Pseudoxanthoma Elasticum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Online Mendelian Inheritance in Man OMIM. McKusick-Nathons Institute for Genetic Medicine, Johns Hopkins University (Baltimore), and National Center for Bio-technology Information, National Library of Medicine (Bethesda, MD). Available at:
  2. 2.
    Royce PM, Steinmann B, eds. Connective tissue and its heritable disorders: molecular, genetic and medical aspects. 2nd ed. New York: Wiley-Liss; 2001.Google Scholar
  3. 3.
    Rimoin DR, Connor JM, Pyeritz RE, Korf BR, eds. Principles and practice of medical genetics. 5th ed. New York: Elsevier; 2007.Google Scholar
  4. 4.
    Pyeritz RE. Common structural disorders of connective tissue. In: King RA, Rotter JI, Motulsky AG, eds. The genetic basis of common diseases. 2nd ed. New York: Oxford University Press; 2001.Google Scholar
  5. 5.
    Beighton P, de Paepe A, Danks D, et al. International nosology of heritable disorders of connective tissue, Berlin, 1986. Am J Med Genet 1988;29:581–594.CrossRefPubMedGoogle Scholar
  6. 6.
    DePaepe A, Deitz HC, Devereux RB, Hennekem R, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996;62:417–426.CrossRefGoogle Scholar
  7. 7.
    Loeys B, Nuytinck L, Delvaux I, et al. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med 2001;161:2447–2454.CrossRefPubMedGoogle Scholar
  8. 8.
    Pyeritz RE. Marfan syndrome and other disorders of fibrillins. In: Rimoin DL, Connor JM, Pyeritz RE, Korf B, eds. Principles and practice of medical genetics. 5th ed. New York: Elsevier; 2007, Chapter 149.Google Scholar
  9. 9.
    Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003;33: 407–411.CrossRefPubMedGoogle Scholar
  10. 10.
    Ng CM, Cheng A, Myers LA, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 2004;114:1543–1546.Google Scholar
  11. 11.
    Erkula G, Jones KB, Sponseller PD, Dietz HC, Pyeritz RE. Growth and maturation in Marfan syndrome. Am J Med Genet 2002;109:100–115.CrossRefPubMedGoogle Scholar
  12. 12.
    Pyeritz RE, Fishman EK, Bernhardt BA, Siegelman SS. Dural ectasia is a common feature of the Marfan syndrome. Am J Hum Genet 1988;43:726–732.PubMedGoogle Scholar
  13. 13.
    Foran JR, Pyeritz RE, Dietz HC, Sponseller PD. Characterization of the symptoms associated with dural ectasia in the Marfan patient. Am J Med Genet A 2005;134: 58–65.Google Scholar
  14. 14.
    Gott VL, Greene PS, Alejo DE, et al. Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med 1999;340:1307–1313.CrossRefPubMedGoogle Scholar
  15. 15.
    Miller DC. Valve-sparing aortic root replacement in patients with the Marfan syndrome. J Thorac Cardiovasc Surg 2003;125:773–778.CrossRefPubMedGoogle Scholar
  16. 16.
    Sponseller PD, Hobbs W, Riley LH III, Pyeritz HE. The thoracolumbar spine in Marfan syndrome. J Bone Joint Surg Am 1995;77:867–876.PubMedGoogle Scholar
  17. 17.
    Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006;312:117–121.CrossRefPubMedGoogle Scholar
  18. 18.
    Pyeritz, RE. Homocystinuria. In: Beighton P, ed. McKusick’s heritable disorders of connective tissue. 5th ed. St. Louis: Mosby; 1993:137–178.Google Scholar
  19. 19.
    Majors A, Pyeritz RE. Deficiency of cysteine impairs deposition of fibrillin-1: implications for the pathogenesis of cystathionine β-synthase deficiency. Mol Genet Metab 2000;70:252–260.CrossRefPubMedGoogle Scholar
  20. 20.
    Rose PS, Levy HP, Liberfarb RM, et al. Stickler syndrome: clinical characteristics and diagnostic criteria. Am J Med Genet 2005;138A:199–207.CrossRefPubMedGoogle Scholar
  21. 21.
    Richards AJ, Baguley DM, Yates JR, et al. Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Am J Hum Genet 2000;67:1083–1094.PubMedGoogle Scholar
  22. 22.
    Byers PH. The Ehlers-Danlos syndromes. In: Rimoin DL, Connor J, Pyeritz RE, Korf B, eds. Principles and practice of medical genetics. 5th ed. New York: Elsevier; 2007, Chapter 149.Google Scholar
  23. 23.
    Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers-Danlos syndromes: revised nosology, Vi1lefranche, 1997. Am J Med Genet 1998;77:31–37.CrossRefPubMedGoogle Scholar
  24. 24.
    Malfait F, Coucke P, Symoens S, et al. The molecular basis of classic Ehlers-Danlos syndrome: a comprehensive study of biochemical and molecular findings in 48 unrelated patients. Hum Mutat 2005;25:28–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Grahame R. Time to take hypermobility seriously (in adults and children). Rheumatology 2001;40:485– 487.CrossRefPubMedGoogle Scholar
  26. 26.
    Zweers MC, Dean WB, van Kuppevelt TH, et al. Elastic fiber abnormalities in hypermobility type Ehlers-Danlos syndrome patients with tenascin-X mutations. Clin Genet 2005;67:330–334.CrossRefPubMedGoogle Scholar
  27. 27.
    Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV. The vascular type. N Engl J Med 2000;342:673– 680.CrossRefPubMedGoogle Scholar
  28. 28.
    Malfait F, De Coster P, Hausser I, et al. The natural history, including orofacial features of three patients with Ehlers-Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am J Med Genet 2004;131A:18–28.CrossRefGoogle Scholar
  29. 29.
    Horton WA, Collins DL, DeSmet AA, Kennedy JA, Schmike RN. Familial joint instability syndrome. Am J Med Genet 1980;6:221–228.CrossRefPubMedGoogle Scholar
  30. 30.
    Sillence D. Osteogenesis imperfecta. In: Rimoin DL, Connor JM, Pyeritz RE, Korf B, eds. Principles and practice of medical genetics. 5th ed. New York: Elsevier; 2007, Chapter 149.Google Scholar
  31. 31.
    Hartikka H, Kuurila K, Korkko J, et al. Lack of correlation between the type of COL1A1 or COL1A2 mutation and hearing loss in osteogenesis imperfecta patients. Hum Mutat 2004;24:147–154.CrossRefPubMedGoogle Scholar
  32. 32.
    Rauch F, Plotkin H, Travers R, et al. Osteogenesis imperfecta types I, III, and IV: effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocr Metab 2003;88:986–992.CrossRefPubMedGoogle Scholar
  33. 33.
    Zeitlin L, Rauch F, Plotkin H, Glorieux FH. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics 2003;111:1030–1036.CrossRefPubMedGoogle Scholar
  34. 34.
    Lindsay R. Modeling the benefits of pamidronate in children with osteogenesis imperfecta. J Clin Invest 2002;110: 1239–1231.Google Scholar
  35. 35.
    Horowitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002;99:8932–8937.CrossRefGoogle Scholar
  36. 36.
    Uitto J. Inherited abnormalities of elastic tissue. In: Rimoin DL, Connor JM, Pyeritz RE, Korf B, eds. Prin-ciples and practice of medical genetics. 5th ed. New York: Elsevier; 2007, Chapter 149.Google Scholar
  37. 37.
    Bergen AA, Plomp AS, Schuurman EJ, et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet 2000;25:228–231.CrossRefPubMedGoogle Scholar
  38. 38.
    Miksch S, Lumsden A, Guenther UP, et al. Molecular genetics of pseudoxanthoma elasticum: type and frequency of mutations in ABCC6. Hum Mutat 2005;26: 235–248.CrossRefPubMedGoogle Scholar
  39. 39.
    Smith R, Athanasou NA, Vipond SE. Fibrodysplasia (myositis) ossificans progressiva: clinicopathological features and natural history. QJM 1996;89:445–446.PubMedGoogle Scholar
  40. 40.
    Shore EM, Xu M, Feldman GJ, et al. A recurrent mutation of the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressive. Nat Genet 2006;38:525–527.CrossRefPubMedGoogle Scholar
  41. 41.
    Neufeld EE, Muenzer J. The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. Metabolic basis of inherited disease. 8th ed. New York: McGraw-Hill; 2001:3421–3452.Google Scholar
  42. 42.
    Kornfield S, Sly WS. I-cell disease and pseudo-hurler polydystrophy: disorders of lysosomal enzyme phosphorylation. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited dis-ease. 8th ed. New York: McGraw-Hill; 2001.Google Scholar
  43. 43.
    Staba SL, Escolar ML, Poe M, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med 2004;350:1960–1969.CrossRefPubMedGoogle Scholar
  44. 44.
    Kakkis ED, Muenzer J, Tiller GE, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 2001;344:182–188.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Reed Edwin Pyeritz
    • 1
  1. 1.Department of Medicine and GeneticsHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations