Advertisement

Metabolic Myopathies

  • Alan N. Baer

The metabolic myopathies are a heterogeneous group of diseases characterized by impaired skeletal muscle energy production. Primary metabolic myopathies are associated with genetically determined defects in glycogen and lipid metabolism and in mitochondrial oxidative phosphorylation. These include the muscle glycogenoses and the lipid and mitochondrial myopathies. Other metabolic myopathies arise from endocrine or electrolyte abnormalities and therapy with specific drugs. A classification of the primary metabolic myopathies is presented in Table 19-1.

Keywords

Glycogen Storage Disease Mitochondrial Myopathy Carnitine Deficiency Carnitine Level Metabolic Myopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vladutiu GD. The molecular diagnosis of metabolic myopathies. Neurol Clin 2000;18:53–104.CrossRefPubMedGoogle Scholar
  2. 2.
    DiMauro S, Lamperti C. Muscle glycogenoses. Muscle Nerve 2001;24:984–999.CrossRefPubMedGoogle Scholar
  3. 3.
    Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 2003;349:2503–2509.CrossRefPubMedGoogle Scholar
  4. 4.
    Livingstone C, Chinnery PF, Turnbull DM. The ischaemic lactate-ammonia test. Ann Clin Biochem 2001;38:304–310.CrossRefPubMedGoogle Scholar
  5. 5.
    Wortmann RL, DiMauro S. Differentiating idiopathic inflammatory myopathies from metabolic myopathies. Rheum Dis Clin North Am 2002;28:759–778.CrossRefPubMedGoogle Scholar
  6. 6.
    Greenberg SA, Walsh RJ. Molecular diagnosis of inher-itable neuromuscular disorders. Part II: application of genetic testing in neuromuscular disease. Muscle Nerve 2005;31:431–451.CrossRefPubMedGoogle Scholar
  7. 7.
    Kiechl S, Kohlendorfer U, Thaler C, et al. Different clinical aspects of debrancher deficiency myopathy. J Neurol Neurosurg Psychiatry 1999;67:364–368.CrossRefPubMedGoogle Scholar
  8. 8.
    Amato AA. Acid maltase deficiency and related myopathies. Neurol Clin 2000;18:151–165.CrossRefPubMedGoogle Scholar
  9. 9.
    Winkel LP, Hagemans ML, van Doorn PA, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol 2005;252:875–884.CrossRefPubMedGoogle Scholar
  10. 10.
    Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med 1991;324:364–369.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang Y, Ye J, Ganapathy V, Longo N. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci USA 1999;96:2356–2360.CrossRefPubMedGoogle Scholar
  12. 12.
    Cwik VA. Disorders of lipid metabolism in skeletal muscle. Neurol Clin 2000;18:167–184.CrossRefPubMedGoogle Scholar
  13. 13.
    Deschauer M, Wieser T, Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol 2005;62:37–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Olpin SE. Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults. Clin Lab 2005;51:289–306.PubMedGoogle Scholar
  15. 15.
    DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348:2656–2668.CrossRefPubMedGoogle Scholar
  16. 16.
    Nardin RA, Johns DR. Mitochondrial dysfunction and neuromuscular disease. Muscle Nerve 2001;24:170–191.CrossRefPubMedGoogle Scholar
  17. 17.
    Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003;126:413–423.CrossRefPubMedGoogle Scholar
  18. 18.
    Tarnopolsky MA, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2005;37:2086–2093.CrossRefPubMedGoogle Scholar
  19. 19.
    Taylor RW, Schaefer AM, Barron MJ, McFarland R, Turnbull DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 2004;14:237–245.CrossRefPubMedGoogle Scholar
  20. 20.
    Tarnopolsky MA, Parise G, Gibala MJ, Graham TE, Rush JW. Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans. J Physiol 2001;533:881–889.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alan N. Baer
    • 1
  1. 1.Department of Medicine, Chief, Section of RheumatologyUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations