Advertisement

Abstract

Osteoarthritis (OA) is the most common form of joint disease in humans. Our ancestors’ skeletons show that it has been with us for many centuries. However, it was only differentiated from other forms of arthritis about 100 years ago (1), when a combination of pathological and radiographic studies made it clear that there were two quite distinct types of synovial joint damage: atrophic arthritis, in which there is periarticular osteoporosis and erosive changes, in addition to cartilage loss; and hypertrophic arthritis, in which the cartilage loss is accompanied by an increase in bone density and bone formation around the joint.

Keywords

Articular Cartilage Subchondral Bone Total Joint Replacement Diffuse Idiopathic Skeletal Hyperostosis Cartilage Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nichols E, Richardson F. Arthritis deformans. J Med Res 1909;21:149–221.PubMedGoogle Scholar
  2. 2.
    Lim K, Rogers J, Shepstone L, Dieppe P. The evolutionary origins of osteoarthritis: a comparative study of hand disease in two primates. J Rheumatol 1995;22:2132–2134.PubMedGoogle Scholar
  3. 3.
    Watt I, Doherty M. Plain radiographic features of osteoarthritis. In: Brandt K, Doherty M, Lohmander S, eds. Osteoarthritis. 2nd ed. Oxford, England: Oxford University Press; 2003.Google Scholar
  4. 4.
    Englund M, Lohmander S. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after menisectomy Arthritis Rheum 2004;50:2811–2819.CrossRefPubMedGoogle Scholar
  5. 5.
    Nakashima E, Kitoh H, Maeda K, et al. Novel COL9A3 mutation in a family with multiple epiphyseal dysplasia. Am J Med Genet A 2005;132:181–184.Google Scholar
  6. 6.
    Sarzi-Puttini P, Atzeni F. New developments in our understanding of DISH (diffuse idiopathic skeletal hyperostosis). Curr Opin Rheumatol 2004;16:287–292.CrossRefPubMedGoogle Scholar
  7. 7.
    Steultjens M, Dekker J, Bijlsma J. Coping, pain and disability in osteoarthritis. J Rheumatol 2001;28:1068–1072.PubMedGoogle Scholar
  8. 8.
    Perry G, Smith M, Whiteside C. Spontaneous recovery of the joint space in degenerative hip disease. Ann Rheum Dis 1979;31:440–448.CrossRefGoogle Scholar
  9. 9.
    Kirwan J, Elson C. Is the progression of osteoarthritis phasic? Evidence and implications. J Rheumatol 2000;27:834–836.PubMedGoogle Scholar
  10. 1.
    Loeser RF, Yammani RR, Carlson CS, et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis Rheum 2005;52:2376–2385.CrossRefPubMedGoogle Scholar
  11. 2.
    Pritzker KPH. Pathology of osteoarthritis. In: Brandt KD, Doherty M, Lohmander S, eds. Osteoarthritis. New York: Oxford University Press; 1998;50–61.Google Scholar
  12. 3.
    Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum 2000;43:1916–1926.CrossRefPubMedGoogle Scholar
  13. 4.
    Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 2005;175:8296–8302.PubMedGoogle Scholar
  14. 5.
    Lajeunesse D, Hilal G, Pelletier JP, Martel-Pelletier J. Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage 1999;7:321–322.CrossRefPubMedGoogle Scholar
  15. 6.
    Cawston T. Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases. Mol Med Today 1998;4:130–137.CrossRefPubMedGoogle Scholar
  16. 7.
    Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF Jr. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 1989;84:678–685.CrossRefPubMedGoogle Scholar
  17. 8.
    Jacques C, Gosset M, Berenbaum F, Gabay C. The Role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm 2006;74:371–403.CrossRefPubMedGoogle Scholar
  18. 9.
    Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop 2004;(Suppl):S37–S46.Google Scholar
  19. 10.
    Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 2005;13:643–654.CrossRefPubMedGoogle Scholar
  20. 11.
    Abramson SB, Attur M, Amin AR, Clancy R. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol Rep 2001;3:535–541.CrossRefPubMedGoogle Scholar
  21. 12.
    Guilak F, Fermor B, Keefe FJ, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop 2004;17–26.Google Scholar
  22. 13.
    van der Kraan PM, van den Berg WB. Anabolic and destructive mediators in osteoarthritis. Curr Opin Clin Nutr Metab Care 2000;3:205–211.CrossRefPubMedGoogle Scholar
  23. 1.
    Altman RD, Hochberg MC, Moskowitz RW, Schnitzer TJ. Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. Arthritis Rheum 2000;43:1905–1915.CrossRefGoogle Scholar
  24. 2.
    Jordan KM, Arden NK, Doherty M, et al. EULAR recommendations 2003: an evidence-based approach to the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2003;62:1145–1155.CrossRefPubMedGoogle Scholar
  25. 3.
    Zhang W, Doherty M, Arden N, et al. EULAR evidence-based recommendations for the management of hip osteoarthritis: report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2005;64:669–681.CrossRefPubMedGoogle Scholar
  26. 4.
    Algorithms for the diagnosis and management of musculoskeletal complaints. Am J Med 1997;103:3S–6S.Google Scholar
  27. 5.
    Lee JA. Adult degenerative joint disease of the knee: maximizing function and promoting joint health: Institute for Clinical System Integration. Postgrad Med 1999;105:183–197.PubMedGoogle Scholar
  28. 6.
    Pencharz JN, Grigoriadis E, Jansz GF, Bombardier C. A critical appraisal of clinical practice guidelines for the treatment of lower-limb osteoarthritis. Arthritis Res 2002;4:36–44.CrossRefPubMedGoogle Scholar
  29. 7.
    van Baar ME, Assendelft WJJ, Dekker J, Oostendorp RAB, Bijlsma WJ. The effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee. Arthritis Rheum 1999;42:1361–1369.CrossRefPubMedGoogle Scholar
  30. 8.
    Baker K, McAlindon T. Exercise for knee osteoarthritis. Curr Opin Rheumatol 2000;12:456–463.CrossRefPubMedGoogle Scholar
  31. 9.
    McAlindon TE, LaValley MP, Gulin JP, Felson DT. Glucosamine and chondroitin for treatment of osteoarthritis; a systematic quality assessment and meta-analysis. JAMA 2000;283:1469–1475.CrossRefPubMedGoogle Scholar
  32. 10.
    Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med 2006;354:795–808.CrossRefPubMedGoogle Scholar
  33. 11.
    Lorig K, Holman HR. Arthritis self-management studies: a 12 year review. Health Educ Quarterly 1993;20:17–28.Google Scholar
  34. 12.
    Kerrigan DC, Todd MK, O’Riley PO. Knee osteoarthritis and high-heeled shoes. Lancet 1998;351:1399–1401.CrossRefPubMedGoogle Scholar
  35. 13.
    Moseley JB, O’Malley K, Petersen NH, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2002;347:81–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul Dieppe
    • 1
  1. 1.Department of Social MedicineUniversity of BristolBristolUK

Personalised recommendations