Skip to main content

Membrane Glycolipids in Neurotrophin Receptor-Mediated Signaling

  • Chapter
Intracellular Mechanisms for Neuritogenesis
  • 347 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad-Rodríguez, J., Ledesma, M.D., Craessaerts, K., Perga, S., Medina, M., Delacourte, A., et al., 2004, Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167: 953–960.

    Article  PubMed  CAS  Google Scholar 

  • Atwal, J.K., Massie, B., Miller, F.D., and Kaplan, D.R., 2000, The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase, Neuron 27: 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Baloh, R.H., Tansey, M.G., Lampe, P.A., Fahrner, T.J., Enomoto, H., Simburger, K.S., et al., 1998, Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex, Neuron 21: 1291–1302.

    Article  PubMed  CAS  Google Scholar 

  • Barker, P.A., 2004, p75NTR is positively promiscuous: Novel partners and new insights, Neuron 42: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, M.C., Ledeen, R.W., Roisen, F.J., Yorke, G., and Sclafani, J.R., 1983, Ganglioside-induced neuritogenesis: Verification that gangliosides are the active agents, and comparison of molecular species, J. Neurochem. 41: 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  • Cai, D., Shen, Y., De Bellard, M., Tang, S., and Filbin, M.T., 1999, Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism, Neuron 22: 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Carey, K.D., Watson, R.T., Pessin, J.E., and Stork, P.J., 2003, The requirement of specific membrane domains for Raf-1 phosphorylation and activation, J. Biol. Chem. 278: 3185–3196.

    Article  PubMed  CAS  Google Scholar 

  • Chester, M.A., 1998, IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN, Nomenclature of glycolipids—recommendations 1997, Eur. J. Biochem. 257: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Chiavegatto, S., Sun, J., Nelson, R.J., and Schnaar, R.L., 2000, A functional role for complex gangliosides: Motor deficits in GM2/GD2 synthase knockout mice, Exp. Neurol. 166: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Cuello, A.C., Garofalo, L., Kenigsberg, R.L., and Maysinger, D., 1989, Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons, Proc. Natl. Acad. Sci. USA 86: 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  • Da Silva, J.S., Medina, M., Zuliani, C., Di Nardo, A., Witke, W., and Dotti, C.G., 2003, RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability, J. Cell Biol. 162: 1267–1279.

    Article  PubMed  CAS  Google Scholar 

  • Da Silva, J.S., Hasegawa, T., Miyagi, T., Dotti, C.G., and Abad-Rodríguez, J., 2005, Asymmetric membrane ganglioside sialidase activity specifies axonal fate, Nat. Neurosci. 8: 606–615.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, B.J., 2001, Rho GTPases in growth cone guidance, Curr. Opin. Neurobiol. 11: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Domeniconi, M., Cao, Z., Spencer, T., Sivasankaran, R., Wang, K., Nikulina, E., et al., 2002, Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth, Neuron 35: 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Domeniconi, M., Zampieri, N., Spencer, T., Hilaire, M., Mellado, W., Chao, M.V., et al., 2005, MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth, Neuron 46: 849–855.

    Article  PubMed  CAS  Google Scholar 

  • Douglass, A.D., and Vale, R.D., 2005, Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells, Cell 121: 937–950.

    Article  PubMed  CAS  Google Scholar 

  • Duchemin, A.M., Ren, Q., Mo, L., Neff, N.H., and Hadjiconstantinou, M., 2002, GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain, J. Neurochem. 81: 696–707.

    Article  PubMed  CAS  Google Scholar 

  • Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., and Tettamanti, G., 1984, Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1, J. Neurochem. 42: 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, T., Franklin, T., Pearl, D.K., and Yates, A.J., 1997, Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA, J. Neurochem. 68: 2348–2355.

    PubMed  CAS  Google Scholar 

  • Ferrari, G., Anderson, B.L., Stephens, R.M., Kaplan, D.R., and Greene, L.A., 1995, Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors, J. Biol. Chem. 270: 3074–3080.

    Article  PubMed  CAS  Google Scholar 

  • Fong, T.G., Vogelsberg, V., Neff, N.H., and Hadjiconstantinou, M., 1995, GM1 and NGF synergism on choline acetyltransferase and choline uptake in aged brain, Neurobiol. Aging 16: 917–923.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, A.E., GrandPre, T., and Strittmatter, S.M., 2001, Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration, Nature 409: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Fujitani, M., Honda, A., Hata, K., Yamagishi, S., Tohyama, M., and Yamashita, T., 2005a, Biological activity of neurotrophins is dependent on recruitment of Rac1 to lipid rafts, Biochem. Biophys. Res. Commun. 327: 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Fujitani, M., Kawai, H., Proia, R.L., Kashiwagi, A., Yasuda, H., and Yamashita, T., 2005b, Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction, J. Neurochem. 94: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Galbiati, F., Razani, B., and Lisanti, M.P., 2001, Emerging themes in lipid rafts and caveolae, Cell 106: 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Golub, T., Wacha, S., and Caroni, P., 2004, Spatial and temporal control of signaling through lipid rafts, Curr. Opin. Neurobiol. 14: 542–550.

    Article  PubMed  CAS  Google Scholar 

  • Guirland, C., Suzuki, S., Kojima, M., Lu, B., and Zheng, J.Q., 2004, Lipid rafts mediate chemotropic guidance of nerve growth cones, Neuron 42: 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Haass, C., 2004, Take five–BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation, EMBO J. 23: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Hadjiconstantinou, M., and Neff, N.H., 1998, GM1 and the aged brain, Ann. N. Y. Acad. Sci. 845: 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Hakomori, S., 1981, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev. Biochem. 50: 733–764.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, T., Yamaguchi, K., Wada, T., Takeda, A., Itoyama, Y., and Miyagi, T., 2000, Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation, J. Biol. Chem. 275: 14778.

    PubMed  CAS  Google Scholar 

  • Higuchi, H., Yamashita, T., Yoshikawa, H., and Tohyama, M., 2003, PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts, EMBO J. 22: 1790–1800.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.S., Zhou, J., Feng, A.K., Lynch, C.C., Klumperman, J., DeArmond, S.J., et al., 1999, Nerve growth factor signaling in caveolae-like domains at the plasma membrane, J. Biol. Chem. 274: 36707–36714.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E.J., and Reichardt, L.F., 2001, Neurotrophins: Roles in neuronal development and function, Annu. Rev. Neurosci. 24: 677–736.

    Article  PubMed  CAS  Google Scholar 

  • Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K., 2000, Physiology and pathophysiology of sphingolipid metabolism and signaling, Biochim. Biophys. Acta 1485: 63–99.

    PubMed  CAS  Google Scholar 

  • Inoue, M., Fujii, Y., Furukawa, K., Okada, M., Okumura, K., Hayakawa, T., et al., 2002, Refractory skin injury in complex knock-out mice expressing only the GM3 ganglioside, J. Biol. Chem. 277: 29881–29888.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar, M., Butters, T.D., Dwek, R.A., and Platt, F.M., 2002, Glycosphingolipid lysosomal storage diseases: Therapy and pathogenesis, Neuropathol. Appl. Neurobiol. 28: 343–357.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K.M., Tan, S., Landman, N., Petrova, K., Murray, S., Lewis, R., et al., 2003, Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor, J. Biol. Chem. 278: 42161–42169.

    Article  PubMed  CAS  Google Scholar 

  • Kalka, D., von Reitzenstein, C., Kopitz, J., and Cantz, M., 2001, The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts, Biochem. Biophys. Res. Commun. 283: 989–993.

    Article  PubMed  CAS  Google Scholar 

  • Kanning, K.C., Hudson, M., Amieux, P.S., Wiley, J.C., Bothwell, M., and Schecterson, L.C., 2003, Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability, J. Neurosci. 23: 5425–5436.

    PubMed  CAS  Google Scholar 

  • Kasahara, K., and Sanai, Y., 2000, Functional roles of glycosphingolipids in signal transduction via lipid rafts, Glycoconj. J. 17: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, K., Watanabe, Y., Yamamoto, T., and Sanai, Y., 1997, Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains, J. Biol. Chem. 272: 29947–29953.

    Article  PubMed  CAS  Google Scholar 

  • Katoh-Semba, R., Skaper, S.D., and Varon, S., 1984, Interaction of GM1 ganglioside with PC12 pheochromocytoma cells: Serum- and NGF-dependent effects on neuritic growth (and proliferation), J. Neurosci. Res. 12: 299–310.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, H., Allende, M.L., Wada, R., Kono, M., Sango, K., Deng, C., et al., 2001, Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures, J. Biol. Chem. 276: 6885–6888.

    Article  PubMed  CAS  Google Scholar 

  • Kotzbauer, P.T., Lampe, P.A., Heuckeroth, R.O., Golden, J.P., Creedon, D.J., Johnson, E.M., Jr., et al., 1996, Neurturin, a relative of glial-cell-line-derived neurotrophic factor, Nature 384: 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen, R.W., 1984, Biology of gangliosides: Neuritogenic and neuronotrophic properties, J. Neurosci. Res. 12: 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen, R.W., 1989, Biosynthesis, metabolism and biological effect of gangliosides, in: Neurobiology of Glycoconjugates, R.U. Margolis, Margolis, R.K., eds., Plenum Press Corp., New York, pp. 43–83.

    Google Scholar 

  • Lee, K.F., Li, E., Huber, L.J., Landis, S.C., Sharpe, A.H., Chao, M.V., et al., 1992, Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system, Cell 69: 737–749.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R., Kermani, P., Teng, K.K., and Hempstead, B.L., 2001, Regulation of cell survival by secreted proneurotrophins, Science 294: 1945–1948.

    Article  PubMed  CAS  Google Scholar 

  • Leskawa, K.C., and Hogan, E.L., 1985, Quantitation of the in vitro neuroblastoma response to exogenous, purified gangliosides, J. Neurosci. Res. 13: 539–550.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, G.R., and Barde, Y.A., 1996, Physiology of the neurotrophins, Annu. Rev. Neurosci. 19: 289–317.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J., and Shaw, A.S., 2005, Getting downstream without a raft, Cell 121: 815–816.

    Article  PubMed  CAS  Google Scholar 

  • Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., and Collins, F., 1993, GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons, Science 260: 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B.P., Fournier, A., GrandPre, T., and Strittmatter, S.M., 2002, Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor, Science 297: 1190–1193.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Nakagawa, T., Kanematsu, T., Uchida, T., and Tsuji, S., 1999, Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the GD3 synthase gene, J. Neurochem. 72: 1781–1790.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B., Pang, P.T., and Woo, N.H., 2005, The yin and yang of neurotrophin action, Nat. Rev. Neurosci. 6: 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Luo, L., 2000, Rho GTPases in neuronal morphogenesis, Nat. Rev. Neurosci. 1: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Markus, A., Patel, T.D., and Snider, W.D., 2002, Neurotrophic factors and axonal growth, Curr. Opin. Neurobiol. 12: 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., et al., 2004, LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex, Nat. Neurosci. 7: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, D., Silletti, J., Murphy, G., D'Eustachio, P., Rush, M., and Philips, M.R., 2001, Differential localization of Rho GTPases in live cells: Regulation by hypervariable regions and RhoGDI binding, J. Cell Biol. 152: 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt, J., de Sauvage, F.J., Fahrner, T.J., Baloh, R.H., Leitner, M.L., Tansey, M.G., et al., 1998, Persephin, a novel neurotrophic factor related to GDNF and neurturin, Neuron 20: 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Miyagi, T., Wada, T., Iwamatsu, A., Hata, K., Yoshikawa, Y., Tokuyama, S., et al., 1999, Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides, J. Biol. Chem. 274: 5004–5011.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, A., Arnaud, L., and Cooper, J.A., 2003, Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain, J. Biol. Chem. 278: 40806–40814.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh, T., Tokuda, A., Guroff, G., and Fujiki, N., 1993, The effect of the B subunit of cholera toxin on the action of nerve growth factor on PC12 cells, J. Neurochem. 60: 1540–1547.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh, T., Tokuda, A., Miyadai, T., Hamaguchi, M., and Fujiki, N., 1995, Ganglioside GM1 binds to the Trk protein and regulates receptor function, Proc. Natl. Acad. Sci. USA 92: 5087–5091.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh, T., Tokuda, A., Inokuchi, J., and Kuriyama, M., 1998, Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells, J. Biol. Chem. 273: 26001–26007.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh, T., Hamano, T., Tokuda, A., and Kuriyama, M., 2000, Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells), Glycoconj. J. 17: 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh, T., Hamano, T., Yano, S., Koga, H., Yamamoto, H., Furukawa, K., et al., 2002, Stable transfection of GM1 synthase gene into GM1-deficient NG108–15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF, Neurochem. Res. 27: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Niederost, B., Oertle, T., Fritsche, J., McKinney, R.A., and Bandtlow, C.E., 2002, Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1, J. Neurosci. 22: 10368–10376.

    PubMed  CAS  Google Scholar 

  • Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., and Urano, T., 2004, Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells, J. Biol. Chem. 279: 33368–33378.

    Article  PubMed  CAS  Google Scholar 

  • Nykjaer, A., Lee, R., Teng, K.K., Jansen, P., Madsen, P., Nielsen, M.S., et al., 2004, Sortilin is essential for proNGF-induced neuronal cell death, Nature 427: 843–848.

    Article  PubMed  CAS  Google Scholar 

  • Okada, M., Itoh Mi, M., Haraguchi, M., Okajima, T., Inoue, M., Oishi, H., et al., 2002, b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve, J. Biol. Chem. 277: 1633–1636.

    Article  PubMed  CAS  Google Scholar 

  • Panni, M.K., Cooper, J.D., and Sofroniew, M.V., 1998, Ganglioside GM1 potentiates NGF action on axotomised medial septal cholinergic neurons, Brain Res. 812: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Paratcha, G., Ledda, F., and Ibanez, C.F., 2003, The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands, Cell 113: 867–879.

    Article  PubMed  CAS  Google Scholar 

  • Perron, J.C., and Bixby, J.L., 1999, Distinct neurite outgrowth signaling pathways converge on ERK activation, Mol. Cell Neurosci. 13: 362–378.

    Article  PubMed  CAS  Google Scholar 

  • Pitto, M., Mutoh, T., Kuriyama, M., Ferraretto, A., Palestini, P., and Masserini, M., 1998, Influence of endogenous GM1 ganglioside on TrkB activity, in cultured neurons, FEBS Lett. 439: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Prinetti, A., Marano, N., Prioni, S., Chigorno, V., Mauri, L., Casellato, R., et al., 2000, Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture, Glycoconj. J. 17: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Rabin, S.J., and Mocchetti, I., 1995, GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA, J. Neurochem. 65: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Rabin, S.J., Bachis, A., and Mocchetti, I., 2002, Gangliosides activate Trk receptors by inducing the release of neurotrophins, J. Biol. Chem. 277: 49466–49472.

    Article  PubMed  CAS  Google Scholar 

  • Riddell, D.R., Christie, G., Hussain, I., and Dingwall, C., 2001, Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts, Curr. Biol. 11: 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez, J.A., Piddini, E., Hasegawa, T., Miyagi, T., and Dotti, C.G., 2001, Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture, J. Neurosci. 21: 8387–8395.

    PubMed  Google Scholar 

  • Sasaki, T., and Takai, Y., 1998, The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control, Biochem. Biophys. Res. Commun. 245: 641–645.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M.E., 2004, Nogo and axon regeneration, Curr. Opin. Neurobiol. 14: 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M., and Spirman, N., 1982, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79: 6080–6083.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D., and Kopan, R., 2003, Notch and Presenilin: Regulated intramembrane proteolysis links development and degeneration, Annu. Rev. Neurosci. 26: 565–597.

    Article  PubMed  CAS  Google Scholar 

  • Sheikh, K.A., Sun, J., Liu, Y., Kawai, H., Crawford, T.O., Proia, R.L., et al., 1999, Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects, Proc. Natl. Acad. Sci. USA 96: 7532–7537.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Toomre, D., 2000, Lipid rafts and signal transduction, Nat. Rev. Mol. Cell. Biol. 1: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Sivasankaran, R., Pei, J., Wang, K.C., Zhang, Y.P., Shields, C.B., Xu, X.M., et al., 2004, PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration, Nat. Neurosci. 7: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Skaper, S.D., Katoh-Semba, R., and Varon, S., 1985, GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions, Brain Res. 355: 19–26.

    PubMed  CAS  Google Scholar 

  • Snider, W.D., and Silos-Santiago, I., 1996, Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm, L., 1964, The gangliosides, J. Lipid Res. 41: 145–155.

    Google Scholar 

  • Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., et al., 1996, Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system, Proc. Natl. Acad. Sci. USA 93: 10662–10667.

    Article  PubMed  CAS  Google Scholar 

  • Tansey, M.G., Baloh, R.H., Milbrandt, J., and Johnson, E.M., Jr., 2000, GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival, Neuron 25: 611–623.

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti, G., 2004, Ganglioside/glycosphingolipid turnover: New concepts, Glycoconj. J. 20: 301–317.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, S., Arita, M., and Nagai, Y., 1983, GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines, J. Biochem. Tokyo 94: 303–306.

    PubMed  CAS  Google Scholar 

  • Vetrivel, K.S., Cheng, H., Lin, W., Sakurai, T., Li, T., Nukina, N., et al., 2004, Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes, J. Biol. Chem. 279: 44945–44954.

    Article  PubMed  CAS  Google Scholar 

  • Vinson, M., Strijbos, P.J., Rowles, A., Facci, L., Moore, S.E., Simmons, D.L., et al., 2001, Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition, J. Biol. Chem. 276: 20280–20285.

    Article  PubMed  CAS  Google Scholar 

  • von Schack, D., Casademunt, E., Schweigreiter, R., Meyer, M., Bibel, M., and Dechant, G., 2001, Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system, Nat. Neurosci. 4: 977–978.

    Article  Google Scholar 

  • Wada, T., Yoshikawa, Y., Tokuyama, S., Kuwabara, M., Akita, H., and Miyagi, T., 1999, Cloning, expression, and chromosomal mapping of a human ganglioside sialidase, Biochem. Biophys. Res. Commun. 261: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Walkley, S.U., 2003, Neurobiology and cellular pathogenesis of glycolipid storage diseases, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358: 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., and He, Z., 2002a, P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp, Nature 420: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., et al., 2002b, Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth, Nature 417: 941–944.

    Article  PubMed  CAS  Google Scholar 

  • Watson, F.L., Porcionatto, M.A., Bhattacharyya, A., Stiles, C.D., and Segal, R.A., 1999, TrkA glycosylation regulates receptor localization and activity, J. Neurobiol. 39: 323–336.

    Article  PubMed  CAS  Google Scholar 

  • Witke, W., Sutherland, J.D., Sharpe, A., Arai, M., and Kwiatkowski, D.J., 2001, Profilin I is essential for cell survival and cell division in early mouse development, Proc. Natl. Acad. Sci. USA 98: 3832–3836.

    Article  PubMed  CAS  Google Scholar 

  • Wong, S.T., Henley, J.R., Kanning, K.C., Huang, K.H., Bothwell, M., and Poo, M.M., 2002, A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein, Nat. Neurosci. 5: 1302–1308.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Butz, S., Ying, Y., and Anderson, R.G., 1997, Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane, J. Biol. Chem. 272: 3554–3559.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., and Tohyama, M., 2003, The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI, Nat. Neurosci. 6: 461–467.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., Tucker, K.L., and Barde, Y.A., 1999a, Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth, Neuron 24: 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., et al., 1999b, A vital role for glycosphingolipid synthesis during development and differentiation, Proc. Natl. Acad. Sci. USA 96: 9142–9147.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Higuchi, H., and Tohyama, M., 2002, The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho, J. Cell Biol. 157: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., et al., 2003, Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc. Natl. Acad. Sci. USA 100: 3445–3449.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Wu, Y.P., Sandhoff, R., Werth, N., Mizukami, H., Ellis, J.M., et al., 2005, Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions, Proc. Natl. Acad. Sci. USA 102: 2725–2730.

    Article  PubMed  CAS  Google Scholar 

  • Yiu, G., and He, Z., 2003, Signaling mechanisms of the myelin inhibitors of axon regeneration, Curr. Opin. Neurobiol. 13: 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Yu, R.K., Bieberich, E., Xia, T., and Zeng, G., 2004a, Regulation of ganglioside biosynthesis in the nervous system, J. Lipid Res. 45: 783–793.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., Guo, W., and Feng, L., 2004b, Segregation of Nogo66 receptors into lipid rafts in rat brain and inhibition of Nogo66 signaling by cholesterol depletion, FEBS Lett. 577: 87–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abad-Rodríguez, J. (2007). Membrane Glycolipids in Neurotrophin Receptor-Mediated Signaling. In: de Curtis, I. (eds) Intracellular Mechanisms for Neuritogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68561-8_9

Download citation

Publish with us

Policies and ethics