Membrane Glycolipids in Neurotrophin Receptor-Mediated Signaling

  • José Abad-Rodríguez


Nerve Growth Factor Neurite Outgrowth Lipid Raft Neurotrophin Signaling RhoA Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad-Rodríguez, J., Ledesma, M.D., Craessaerts, K., Perga, S., Medina, M., Delacourte, A., et al., 2004, Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167: 953–960.PubMedCrossRefGoogle Scholar
  2. Atwal, J.K., Massie, B., Miller, F.D., and Kaplan, D.R., 2000, The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase, Neuron 27: 265–277.PubMedCrossRefGoogle Scholar
  3. Baloh, R.H., Tansey, M.G., Lampe, P.A., Fahrner, T.J., Enomoto, H., Simburger, K.S., et al., 1998, Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex, Neuron 21: 1291–1302.PubMedCrossRefGoogle Scholar
  4. Barker, P.A., 2004, p75NTR is positively promiscuous: Novel partners and new insights, Neuron 42: 529–533.PubMedCrossRefGoogle Scholar
  5. Byrne, M.C., Ledeen, R.W., Roisen, F.J., Yorke, G., and Sclafani, J.R., 1983, Ganglioside-induced neuritogenesis: Verification that gangliosides are the active agents, and comparison of molecular species, J. Neurochem. 41: 1214–1222.PubMedCrossRefGoogle Scholar
  6. Cai, D., Shen, Y., De Bellard, M., Tang, S., and Filbin, M.T., 1999, Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism, Neuron 22: 89–101.PubMedCrossRefGoogle Scholar
  7. Carey, K.D., Watson, R.T., Pessin, J.E., and Stork, P.J., 2003, The requirement of specific membrane domains for Raf-1 phosphorylation and activation, J. Biol. Chem. 278: 3185–3196.PubMedCrossRefGoogle Scholar
  8. Chester, M.A., 1998, IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN, Nomenclature of glycolipids—recommendations 1997, Eur. J. Biochem. 257: 293–298.PubMedCrossRefGoogle Scholar
  9. Chiavegatto, S., Sun, J., Nelson, R.J., and Schnaar, R.L., 2000, A functional role for complex gangliosides: Motor deficits in GM2/GD2 synthase knockout mice, Exp. Neurol. 166: 227–234.PubMedCrossRefGoogle Scholar
  10. Cuello, A.C., Garofalo, L., Kenigsberg, R.L., and Maysinger, D., 1989, Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons, Proc. Natl. Acad. Sci. USA 86: 2056–2060.PubMedCrossRefGoogle Scholar
  11. Da Silva, J.S., Medina, M., Zuliani, C., Di Nardo, A., Witke, W., and Dotti, C.G., 2003, RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability, J. Cell Biol. 162: 1267–1279.PubMedCrossRefGoogle Scholar
  12. Da Silva, J.S., Hasegawa, T., Miyagi, T., Dotti, C.G., and Abad-Rodríguez, J., 2005, Asymmetric membrane ganglioside sialidase activity specifies axonal fate, Nat. Neurosci. 8: 606–615.PubMedCrossRefGoogle Scholar
  13. Dickson, B.J., 2001, Rho GTPases in growth cone guidance, Curr. Opin. Neurobiol. 11: 103–110.PubMedCrossRefGoogle Scholar
  14. Domeniconi, M., Cao, Z., Spencer, T., Sivasankaran, R., Wang, K., Nikulina, E., et al., 2002, Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth, Neuron 35: 283–290.PubMedCrossRefGoogle Scholar
  15. Domeniconi, M., Zampieri, N., Spencer, T., Hilaire, M., Mellado, W., Chao, M.V., et al., 2005, MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth, Neuron 46: 849–855.PubMedCrossRefGoogle Scholar
  16. Douglass, A.D., and Vale, R.D., 2005, Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells, Cell 121: 937–950.PubMedCrossRefGoogle Scholar
  17. Duchemin, A.M., Ren, Q., Mo, L., Neff, N.H., and Hadjiconstantinou, M., 2002, GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain, J. Neurochem. 81: 696–707.PubMedCrossRefGoogle Scholar
  18. Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., and Tettamanti, G., 1984, Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1, J. Neurochem. 42: 299–305.PubMedCrossRefGoogle Scholar
  19. Farooqui, T., Franklin, T., Pearl, D.K., and Yates, A.J., 1997, Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA, J. Neurochem. 68: 2348–2355.PubMedGoogle Scholar
  20. Ferrari, G., Anderson, B.L., Stephens, R.M., Kaplan, D.R., and Greene, L.A., 1995, Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors, J. Biol. Chem. 270: 3074–3080.PubMedCrossRefGoogle Scholar
  21. Fong, T.G., Vogelsberg, V., Neff, N.H., and Hadjiconstantinou, M., 1995, GM1 and NGF synergism on choline acetyltransferase and choline uptake in aged brain, Neurobiol. Aging 16: 917–923.PubMedCrossRefGoogle Scholar
  22. Fournier, A.E., GrandPre, T., and Strittmatter, S.M., 2001, Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration, Nature 409: 341–346.PubMedCrossRefGoogle Scholar
  23. Fujitani, M., Honda, A., Hata, K., Yamagishi, S., Tohyama, M., and Yamashita, T., 2005a, Biological activity of neurotrophins is dependent on recruitment of Rac1 to lipid rafts, Biochem. Biophys. Res. Commun. 327: 150–154.PubMedCrossRefGoogle Scholar
  24. Fujitani, M., Kawai, H., Proia, R.L., Kashiwagi, A., Yasuda, H., and Yamashita, T., 2005b, Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction, J. Neurochem. 94: 15–21.PubMedCrossRefGoogle Scholar
  25. Galbiati, F., Razani, B., and Lisanti, M.P., 2001, Emerging themes in lipid rafts and caveolae, Cell 106: 403–411.PubMedCrossRefGoogle Scholar
  26. Golub, T., Wacha, S., and Caroni, P., 2004, Spatial and temporal control of signaling through lipid rafts, Curr. Opin. Neurobiol. 14: 542–550.PubMedCrossRefGoogle Scholar
  27. Guirland, C., Suzuki, S., Kojima, M., Lu, B., and Zheng, J.Q., 2004, Lipid rafts mediate chemotropic guidance of nerve growth cones, Neuron 42: 51–62.PubMedCrossRefGoogle Scholar
  28. Haass, C., 2004, Take five–BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation, EMBO J. 23: 483–488.PubMedCrossRefGoogle Scholar
  29. Hadjiconstantinou, M., and Neff, N.H., 1998, GM1 and the aged brain, Ann. N. Y. Acad. Sci. 845: 225–231.PubMedCrossRefGoogle Scholar
  30. Hakomori, S., 1981, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev. Biochem. 50: 733–764.PubMedCrossRefGoogle Scholar
  31. Hasegawa, T., Yamaguchi, K., Wada, T., Takeda, A., Itoyama, Y., and Miyagi, T., 2000, Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation, J. Biol. Chem. 275: 14778.PubMedGoogle Scholar
  32. Higuchi, H., Yamashita, T., Yoshikawa, H., and Tohyama, M., 2003, PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts, EMBO J. 22: 1790–1800.PubMedCrossRefGoogle Scholar
  33. Huang, C.S., Zhou, J., Feng, A.K., Lynch, C.C., Klumperman, J., DeArmond, S.J., et al., 1999, Nerve growth factor signaling in caveolae-like domains at the plasma membrane, J. Biol. Chem. 274: 36707–36714.PubMedCrossRefGoogle Scholar
  34. Huang, E.J., and Reichardt, L.F., 2001, Neurotrophins: Roles in neuronal development and function, Annu. Rev. Neurosci. 24: 677–736.PubMedCrossRefGoogle Scholar
  35. Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K., 2000, Physiology and pathophysiology of sphingolipid metabolism and signaling, Biochim. Biophys. Acta 1485: 63–99.PubMedGoogle Scholar
  36. Inoue, M., Fujii, Y., Furukawa, K., Okada, M., Okumura, K., Hayakawa, T., et al., 2002, Refractory skin injury in complex knock-out mice expressing only the GM3 ganglioside, J. Biol. Chem. 277: 29881–29888.PubMedCrossRefGoogle Scholar
  37. Jeyakumar, M., Butters, T.D., Dwek, R.A., and Platt, F.M., 2002, Glycosphingolipid lysosomal storage diseases: Therapy and pathogenesis, Neuropathol. Appl. Neurobiol. 28: 343–357.PubMedCrossRefGoogle Scholar
  38. Jung, K.M., Tan, S., Landman, N., Petrova, K., Murray, S., Lewis, R., et al., 2003, Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor, J. Biol. Chem. 278: 42161–42169.PubMedCrossRefGoogle Scholar
  39. Kalka, D., von Reitzenstein, C., Kopitz, J., and Cantz, M., 2001, The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts, Biochem. Biophys. Res. Commun. 283: 989–993.PubMedCrossRefGoogle Scholar
  40. Kanning, K.C., Hudson, M., Amieux, P.S., Wiley, J.C., Bothwell, M., and Schecterson, L.C., 2003, Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability, J. Neurosci. 23: 5425–5436.PubMedGoogle Scholar
  41. Kasahara, K., and Sanai, Y., 2000, Functional roles of glycosphingolipids in signal transduction via lipid rafts, Glycoconj. J. 17: 153–162.PubMedCrossRefGoogle Scholar
  42. Kasahara, K., Watanabe, Y., Yamamoto, T., and Sanai, Y., 1997, Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains, J. Biol. Chem. 272: 29947–29953.PubMedCrossRefGoogle Scholar
  43. Katoh-Semba, R., Skaper, S.D., and Varon, S., 1984, Interaction of GM1 ganglioside with PC12 pheochromocytoma cells: Serum- and NGF-dependent effects on neuritic growth (and proliferation), J. Neurosci. Res. 12: 299–310.PubMedCrossRefGoogle Scholar
  44. Kawai, H., Allende, M.L., Wada, R., Kono, M., Sango, K., Deng, C., et al., 2001, Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures, J. Biol. Chem. 276: 6885–6888.PubMedCrossRefGoogle Scholar
  45. Kotzbauer, P.T., Lampe, P.A., Heuckeroth, R.O., Golden, J.P., Creedon, D.J., Johnson, E.M., Jr., et al., 1996, Neurturin, a relative of glial-cell-line-derived neurotrophic factor, Nature 384: 467–470.PubMedCrossRefGoogle Scholar
  46. Ledeen, R.W., 1984, Biology of gangliosides: Neuritogenic and neuronotrophic properties, J. Neurosci. Res. 12: 147–159.PubMedCrossRefGoogle Scholar
  47. Ledeen, R.W., 1989, Biosynthesis, metabolism and biological effect of gangliosides, in: Neurobiology of Glycoconjugates, R.U. Margolis, Margolis, R.K., eds., Plenum Press Corp., New York, pp. 43–83.Google Scholar
  48. Lee, K.F., Li, E., Huber, L.J., Landis, S.C., Sharpe, A.H., Chao, M.V., et al., 1992, Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system, Cell 69: 737–749.PubMedCrossRefGoogle Scholar
  49. Lee, R., Kermani, P., Teng, K.K., and Hempstead, B.L., 2001, Regulation of cell survival by secreted proneurotrophins, Science 294: 1945–1948.PubMedCrossRefGoogle Scholar
  50. Leskawa, K.C., and Hogan, E.L., 1985, Quantitation of the in vitro neuroblastoma response to exogenous, purified gangliosides, J. Neurosci. Res. 13: 539–550.PubMedCrossRefGoogle Scholar
  51. Lewin, G.R., and Barde, Y.A., 1996, Physiology of the neurotrophins, Annu. Rev. Neurosci. 19: 289–317.PubMedCrossRefGoogle Scholar
  52. Lin, J., and Shaw, A.S., 2005, Getting downstream without a raft, Cell 121: 815–816.PubMedCrossRefGoogle Scholar
  53. Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., and Collins, F., 1993, GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons, Science 260: 1130–1132.PubMedCrossRefGoogle Scholar
  54. Liu, B.P., Fournier, A., GrandPre, T., and Strittmatter, S.M., 2002, Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor, Science 297: 1190–1193.PubMedCrossRefGoogle Scholar
  55. Liu, H., Nakagawa, T., Kanematsu, T., Uchida, T., and Tsuji, S., 1999, Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the GD3 synthase gene, J. Neurochem. 72: 1781–1790.PubMedCrossRefGoogle Scholar
  56. Lu, B., Pang, P.T., and Woo, N.H., 2005, The yin and yang of neurotrophin action, Nat. Rev. Neurosci. 6: 603–614.PubMedCrossRefGoogle Scholar
  57. Luo, L., 2000, Rho GTPases in neuronal morphogenesis, Nat. Rev. Neurosci. 1: 173–180.PubMedCrossRefGoogle Scholar
  58. Markus, A., Patel, T.D., and Snider, W.D., 2002, Neurotrophic factors and axonal growth, Curr. Opin. Neurobiol. 12: 523–531.PubMedCrossRefGoogle Scholar
  59. Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., et al., 2004, LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex, Nat. Neurosci. 7: 221–228.PubMedCrossRefGoogle Scholar
  60. Michaelson, D., Silletti, J., Murphy, G., D'Eustachio, P., Rush, M., and Philips, M.R., 2001, Differential localization of Rho GTPases in live cells: Regulation by hypervariable regions and RhoGDI binding, J. Cell Biol. 152: 111–126.PubMedCrossRefGoogle Scholar
  61. Milbrandt, J., de Sauvage, F.J., Fahrner, T.J., Baloh, R.H., Leitner, M.L., Tansey, M.G., et al., 1998, Persephin, a novel neurotrophic factor related to GDNF and neurturin, Neuron 20: 245–253.PubMedCrossRefGoogle Scholar
  62. Miyagi, T., Wada, T., Iwamatsu, A., Hata, K., Yoshikawa, Y., Tokuyama, S., et al., 1999, Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides, J. Biol. Chem. 274: 5004–5011.PubMedCrossRefGoogle Scholar
  63. Mukherjee, A., Arnaud, L., and Cooper, J.A., 2003, Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain, J. Biol. Chem. 278: 40806–40814.PubMedCrossRefGoogle Scholar
  64. Mutoh, T., Tokuda, A., Guroff, G., and Fujiki, N., 1993, The effect of the B subunit of cholera toxin on the action of nerve growth factor on PC12 cells, J. Neurochem. 60: 1540–1547.PubMedCrossRefGoogle Scholar
  65. Mutoh, T., Tokuda, A., Miyadai, T., Hamaguchi, M., and Fujiki, N., 1995, Ganglioside GM1 binds to the Trk protein and regulates receptor function, Proc. Natl. Acad. Sci. USA 92: 5087–5091.PubMedCrossRefGoogle Scholar
  66. Mutoh, T., Tokuda, A., Inokuchi, J., and Kuriyama, M., 1998, Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells, J. Biol. Chem. 273: 26001–26007.PubMedCrossRefGoogle Scholar
  67. Mutoh, T., Hamano, T., Tokuda, A., and Kuriyama, M., 2000, Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells), Glycoconj. J. 17: 233–237.PubMedCrossRefGoogle Scholar
  68. Mutoh, T., Hamano, T., Yano, S., Koga, H., Yamamoto, H., Furukawa, K., et al., 2002, Stable transfection of GM1 synthase gene into GM1-deficient NG108–15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF, Neurochem. Res. 27: 801–806.PubMedCrossRefGoogle Scholar
  69. Niederost, B., Oertle, T., Fritsche, J., McKinney, R.A., and Bandtlow, C.E., 2002, Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1, J. Neurosci. 22: 10368–10376.PubMedGoogle Scholar
  70. Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., and Urano, T., 2004, Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells, J. Biol. Chem. 279: 33368–33378.PubMedCrossRefGoogle Scholar
  71. Nykjaer, A., Lee, R., Teng, K.K., Jansen, P., Madsen, P., Nielsen, M.S., et al., 2004, Sortilin is essential for proNGF-induced neuronal cell death, Nature 427: 843–848.PubMedCrossRefGoogle Scholar
  72. Okada, M., Itoh Mi, M., Haraguchi, M., Okajima, T., Inoue, M., Oishi, H., et al., 2002, b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve, J. Biol. Chem. 277: 1633–1636.PubMedCrossRefGoogle Scholar
  73. Panni, M.K., Cooper, J.D., and Sofroniew, M.V., 1998, Ganglioside GM1 potentiates NGF action on axotomised medial septal cholinergic neurons, Brain Res. 812: 76–80.PubMedCrossRefGoogle Scholar
  74. Paratcha, G., Ledda, F., and Ibanez, C.F., 2003, The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands, Cell 113: 867–879.PubMedCrossRefGoogle Scholar
  75. Perron, J.C., and Bixby, J.L., 1999, Distinct neurite outgrowth signaling pathways converge on ERK activation, Mol. Cell Neurosci. 13: 362–378.PubMedCrossRefGoogle Scholar
  76. Pitto, M., Mutoh, T., Kuriyama, M., Ferraretto, A., Palestini, P., and Masserini, M., 1998, Influence of endogenous GM1 ganglioside on TrkB activity, in cultured neurons, FEBS Lett. 439: 93–96.PubMedCrossRefGoogle Scholar
  77. Prinetti, A., Marano, N., Prioni, S., Chigorno, V., Mauri, L., Casellato, R., et al., 2000, Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture, Glycoconj. J. 17: 223–232.PubMedCrossRefGoogle Scholar
  78. Rabin, S.J., and Mocchetti, I., 1995, GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA, J. Neurochem. 65: 347–354.PubMedCrossRefGoogle Scholar
  79. Rabin, S.J., Bachis, A., and Mocchetti, I., 2002, Gangliosides activate Trk receptors by inducing the release of neurotrophins, J. Biol. Chem. 277: 49466–49472.PubMedCrossRefGoogle Scholar
  80. Riddell, D.R., Christie, G., Hussain, I., and Dingwall, C., 2001, Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts, Curr. Biol. 11: 1288–1293.PubMedCrossRefGoogle Scholar
  81. Rodríguez, J.A., Piddini, E., Hasegawa, T., Miyagi, T., and Dotti, C.G., 2001, Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture, J. Neurosci. 21: 8387–8395.PubMedGoogle Scholar
  82. Sasaki, T., and Takai, Y., 1998, The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control, Biochem. Biophys. Res. Commun. 245: 641–645.PubMedCrossRefGoogle Scholar
  83. Schwab, M.E., 2004, Nogo and axon regeneration, Curr. Opin. Neurobiol. 14: 118–124.PubMedCrossRefGoogle Scholar
  84. Schwartz, M., and Spirman, N., 1982, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79: 6080–6083.PubMedCrossRefGoogle Scholar
  85. Selkoe, D., and Kopan, R., 2003, Notch and Presenilin: Regulated intramembrane proteolysis links development and degeneration, Annu. Rev. Neurosci. 26: 565–597.PubMedCrossRefGoogle Scholar
  86. Sheikh, K.A., Sun, J., Liu, Y., Kawai, H., Crawford, T.O., Proia, R.L., et al., 1999, Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects, Proc. Natl. Acad. Sci. USA 96: 7532–7537.PubMedCrossRefGoogle Scholar
  87. Simons, K., and Toomre, D., 2000, Lipid rafts and signal transduction, Nat. Rev. Mol. Cell. Biol. 1: 31–39.PubMedCrossRefGoogle Scholar
  88. Sivasankaran, R., Pei, J., Wang, K.C., Zhang, Y.P., Shields, C.B., Xu, X.M., et al., 2004, PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration, Nat. Neurosci. 7: 261–268.PubMedCrossRefGoogle Scholar
  89. Skaper, S.D., Katoh-Semba, R., and Varon, S., 1985, GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions, Brain Res. 355: 19–26.PubMedGoogle Scholar
  90. Snider, W.D., and Silos-Santiago, I., 1996, Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351: 395–403.PubMedCrossRefGoogle Scholar
  91. Svennerholm, L., 1964, The gangliosides, J. Lipid Res. 41: 145–155.Google Scholar
  92. Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., et al., 1996, Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system, Proc. Natl. Acad. Sci. USA 93: 10662–10667.PubMedCrossRefGoogle Scholar
  93. Tansey, M.G., Baloh, R.H., Milbrandt, J., and Johnson, E.M., Jr., 2000, GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival, Neuron 25: 611–623.PubMedCrossRefGoogle Scholar
  94. Tettamanti, G., 2004, Ganglioside/glycosphingolipid turnover: New concepts, Glycoconj. J. 20: 301–317.PubMedCrossRefGoogle Scholar
  95. Tsuji, S., Arita, M., and Nagai, Y., 1983, GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines, J. Biochem. Tokyo 94: 303–306.PubMedGoogle Scholar
  96. Vetrivel, K.S., Cheng, H., Lin, W., Sakurai, T., Li, T., Nukina, N., et al., 2004, Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes, J. Biol. Chem. 279: 44945–44954.PubMedCrossRefGoogle Scholar
  97. Vinson, M., Strijbos, P.J., Rowles, A., Facci, L., Moore, S.E., Simmons, D.L., et al., 2001, Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition, J. Biol. Chem. 276: 20280–20285.PubMedCrossRefGoogle Scholar
  98. von Schack, D., Casademunt, E., Schweigreiter, R., Meyer, M., Bibel, M., and Dechant, G., 2001, Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system, Nat. Neurosci. 4: 977–978.CrossRefGoogle Scholar
  99. Wada, T., Yoshikawa, Y., Tokuyama, S., Kuwabara, M., Akita, H., and Miyagi, T., 1999, Cloning, expression, and chromosomal mapping of a human ganglioside sialidase, Biochem. Biophys. Res. Commun. 261: 21–27.PubMedCrossRefGoogle Scholar
  100. Walkley, S.U., 2003, Neurobiology and cellular pathogenesis of glycolipid storage diseases, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358: 893–904.PubMedCrossRefGoogle Scholar
  101. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., and He, Z., 2002a, P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp, Nature 420: 74–78.PubMedCrossRefGoogle Scholar
  102. Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., et al., 2002b, Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth, Nature 417: 941–944.PubMedCrossRefGoogle Scholar
  103. Watson, F.L., Porcionatto, M.A., Bhattacharyya, A., Stiles, C.D., and Segal, R.A., 1999, TrkA glycosylation regulates receptor localization and activity, J. Neurobiol. 39: 323–336.PubMedCrossRefGoogle Scholar
  104. Witke, W., Sutherland, J.D., Sharpe, A., Arai, M., and Kwiatkowski, D.J., 2001, Profilin I is essential for cell survival and cell division in early mouse development, Proc. Natl. Acad. Sci. USA 98: 3832–3836.PubMedCrossRefGoogle Scholar
  105. Wong, S.T., Henley, J.R., Kanning, K.C., Huang, K.H., Bothwell, M., and Poo, M.M., 2002, A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein, Nat. Neurosci. 5: 1302–1308.PubMedCrossRefGoogle Scholar
  106. Wu, C., Butz, S., Ying, Y., and Anderson, R.G., 1997, Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane, J. Biol. Chem. 272: 3554–3559.PubMedCrossRefGoogle Scholar
  107. Yamashita, T., and Tohyama, M., 2003, The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI, Nat. Neurosci. 6: 461–467.PubMedGoogle Scholar
  108. Yamashita, T., Tucker, K.L., and Barde, Y.A., 1999a, Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth, Neuron 24: 585–593.PubMedCrossRefGoogle Scholar
  109. Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., et al., 1999b, A vital role for glycosphingolipid synthesis during development and differentiation, Proc. Natl. Acad. Sci. USA 96: 9142–9147.PubMedCrossRefGoogle Scholar
  110. Yamashita, T., Higuchi, H., and Tohyama, M., 2002, The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho, J. Cell Biol. 157: 565–570.PubMedCrossRefGoogle Scholar
  111. Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., et al., 2003, Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc. Natl. Acad. Sci. USA 100: 3445–3449.PubMedCrossRefGoogle Scholar
  112. Yamashita, T., Wu, Y.P., Sandhoff, R., Werth, N., Mizukami, H., Ellis, J.M., et al., 2005, Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions, Proc. Natl. Acad. Sci. USA 102: 2725–2730.PubMedCrossRefGoogle Scholar
  113. Yiu, G., and He, Z., 2003, Signaling mechanisms of the myelin inhibitors of axon regeneration, Curr. Opin. Neurobiol. 13: 545–551.PubMedCrossRefGoogle Scholar
  114. Yu, R.K., Bieberich, E., Xia, T., and Zeng, G., 2004a, Regulation of ganglioside biosynthesis in the nervous system, J. Lipid Res. 45: 783–793.PubMedCrossRefGoogle Scholar
  115. Yu, W., Guo, W., and Feng, L., 2004b, Segregation of Nogo66 receptors into lipid rafts in rat brain and inhibition of Nogo66 signaling by cholesterol depletion, FEBS Lett. 577: 87–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • José Abad-Rodríguez
    • 1
  1. 1.Fondazione Cavalieri OttolenghiA.O. San Luigi GonzagaOrbassanoItaly

Personalised recommendations