Role of the Golgi Apparatus During Axon Formation

  • Alfredo Cáceres
  • Gabriela Paglini
  • Santiago Quiroga
  • Adriana Ferreira


Hippocampal Neuron Golgi Apparatus Growth Cone Polarity Protein Hippocampal Pyramidal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abo, A., Qu, J., Cammarano, M., Dan, C., Fritsch, A., Baud, A., et al., 1998, PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia, EMBO J. 22: 6527–6540.Google Scholar
  2. Ayala, J., Touchot, N., Zahraoui, A., Tavitian, A., and Prochiantz, A., 1990, The product of rab2, a small GTP binding protein, increases neuronal adhesion, and neurite growth in vitro, Neuron 4: 797–805.PubMedGoogle Scholar
  3. Baron, C., and Malhotra, V., 2000, Role of dyacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane, Science 295: 325–328.Google Scholar
  4. Barr, F.A., and Short, B., 2003, Golgins in the structure and dynamics of the Golgi apparatus, Curr. Opin. Cell Biol. 15: 405–413.PubMedGoogle Scholar
  5. Barr, F., Puype. M., Vandekerckhove, J., and Warren, G., 1997, GRASP65, a protein involved in the stacking of Golgi cisternae, Cell 91: 253–262.PubMedGoogle Scholar
  6. Bradke, F., and Dotti, C.G., 1997, Neuronal polarity: Vectorial cytoplasmic flow precedes axon formation, Neuron 19: 1175–1186.PubMedGoogle Scholar
  7. Cabrera-Poch, N., Sanchez-Ruiloba, L., Rodriguez-Martinez, M., and Iglesias, T., 2004, Lipid raft disruption triggers protein kinase C and Src-dependent protein kinase D activation and Kidins220 phosphorylation in neuronal cells, J. Biol. Chem. 279: 28592–28602.PubMedGoogle Scholar
  8. Camera, P., Santos Da Silva, J., Griffiths, G., Giuffrida, M., Ferrara, L., Schubert, V., et al., 2003, Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeletal organization, Nat. Cell Biol. 5: 1071–1078.PubMedGoogle Scholar
  9. Cao, H., Weller, S., Orth, J.D., Chen, J., Huang, B., Chen, J.L., et al., 2005, Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport, Nat. Cell Biol. 7: 483–492.PubMedGoogle Scholar
  10. Cau, J., and Hall, A., 2005, Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways, J. Cell Sci. 118: 2579–2587.PubMedGoogle Scholar
  11. Cerione, R., 2004, Cdc42: new roads to travel, Trends Cell Biol. 14: 127–132.PubMedGoogle Scholar
  12. Chen, J., Lacomis, L., Erdjument-Bromage, H., Tempst, P., and Stamnes, M., 2004, Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes, FEBS Lett. 566: 281–286.PubMedGoogle Scholar
  13. Chen, J., Fucini, R., Lacomis, L., Erdjument-Bromage, H., Tempst, P., and Stamnes, M., 2005, Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles, J. Cell Biol. 169: 383–389.PubMedGoogle Scholar
  14. Chieregatti, E., and Meldolesi, J., 2005, Regulated exocytosis: new organelles for non-secretory purposes, Nat. Rev. Mol. Cell Biol. 6: 181–187.PubMedGoogle Scholar
  15. Chuang, J., Yen, T., Bollati, F., Conde, C., Canavosio, F., Cáceres, A., et al., 2005, The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth, Dev. Cell 9: 75–86.PubMedGoogle Scholar
  16. Cohen, D., Musch, A., and Rodriguez-Boulan, E., 2001, Selective control of basolateral membrane protein polarity by Cdc42, Traffic 2: 556–564.PubMedGoogle Scholar
  17. Craig, A., and Banker, G., 1994, Neuronal polarity, Ann. Rev. Neurosci. 17: 267–310.PubMedGoogle Scholar
  18. Craig, A., Wyborski, R, and Banker, G., 1995, Preferential addition of newly synthesized membrane protein at axonal growth cones, Nature 375: 592–594.PubMedGoogle Scholar
  19. Cruz, J., Tsai, L.-H., 2004, A Jekyll and Hyde kinase: Roles for Cdk5 in brain development and disease, Curr. Opin. Neurobiol. 14: 390–394.PubMedGoogle Scholar
  20. Dan, C., Kelly, A., Bernard, O., and Minden, A., 2001, Cytoskeletal changes regulated by the PAK4 serine-threonine kinase are mediated by LIMK1 and cofilin, J. Biol. Chem. 276: 32115–32121.PubMedGoogle Scholar
  21. de Anda, F., Pollarolo, G., Da Silva, J., Camoletto, P., Feiguin, F., and Dotti, C., 2005, Centrosome localization determines neuronal polarity, Nature 436: 704–708.PubMedGoogle Scholar
  22. Dent, E., and Gertler, F., 2003, Cytoskeletal dynamics and transport in growth cone motility and axon guidance, Neuron 40: 209–227.PubMedGoogle Scholar
  23. De Hoop, M.J., Huber, L., Stenmark, H., Williamson, E., Zerial, M., Parton, R., et al., 1994, Rab5 involvement in axonal and dendritic endocytosis, Neuron 13: 11–22.PubMedGoogle Scholar
  24. Dhavan, R., and Tsai, L-H., 2001, A decade of Cdk5, Nature Rev. 2: 749–759.Google Scholar
  25. Dotti, C.G., and Banker, G., 1991, Intracellular organization of hippocampal neurons during the development of neuronal polarity, J. Cell Sci. Suppl. 15: 75–84.PubMedGoogle Scholar
  26. Dubois, T., Paleotti, O., Mironov, A., Fraisier, V., Stradal, T., De Matteis, M., et al., 2005, Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics, Nat. Cell Biol. 7: 353–364.PubMedGoogle Scholar
  27. Duran, J., Valderrama, F., Castel, S., Magdalena, J., Tomas, M., Hosoya, H., et al., 2003, Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport, Mol. Biol. Cell. 14: 445–459.PubMedGoogle Scholar
  28. Etienne-Manneville, S., and Hall, A., 2001, Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta, Cell 106: 489–498.PubMedGoogle Scholar
  29. Ferreira, A., Niclas, J., Vale, R., Banker, G., and Kosik, K., 1992, Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides, J. Cell Biol. 117: 595–606.PubMedGoogle Scholar
  30. Ferreira, A., Cáceres, A., and Kosik, K., 1993, Intraneuronal compartments of the amyloid precursor protein, J. Neurosci. 13: 3112–3123.PubMedGoogle Scholar
  31. Fischer von Mollard, G., Sudhof, T., and Jahn, R., 1991, A small GTP-binding protein dissociates from synaptic vesicles during exocytosis, Nature 349: 79–81.PubMedGoogle Scholar
  32. Fucini, R., Navarrete, A., Vadakkan, C., Lacomis, L., Erdjument-Bromage, H., Tempts, P., et al., 2000, Activated ADP-ribosylation factor assembles distinct pools of actin in Golgi membranes, J. Biol. Chem. 275: 18824–18829.PubMedGoogle Scholar
  33. Fucini, R., Chen, J., Sharma, C., Kessels, M., and Stamnes, M., 2002, Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1, Mol. Biol. Cell 13: 621–631.PubMedGoogle Scholar
  34. Fukata, Y., Itoh, T., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., et al., 2002, CRMP2 binds to tubulin heterodimers to promote microtubule assembly, Nat. Cell Biol. 4: 583–591.PubMedGoogle Scholar
  35. Futerman, A., and Banker, G., 1996, The economics of neurite outgrowth-the addition of new membrane to growing axons, Trends Neurosci. 19: 144–149.PubMedGoogle Scholar
  36. Goda, Y., and Davis, G., 2003, Mechanisms of synapse assembly and disassembly, Neuron 40: 243–264.PubMedGoogle Scholar
  37. Gomes, E.R., Jani S., Gundersen G.G., 2005, Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells, Cell 121: 451–463.PubMedGoogle Scholar
  38. Goslin, K., and Banker, G., 1990, Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions, J. Cell Biol. 110: 1319–1331.PubMedGoogle Scholar
  39. Gotlieb, A.I., May, L.M., Subrahmanyan, L., and Kalnins, V.I., 1981, Distribution of microtubule organizing centers in migrating sheets of endothelial cells, J. Cell Biol. 91: 589–594.PubMedGoogle Scholar
  40. Govek, E., Newey, S., and VanAelst, L., 2005, Role of the GTPases in neuronal development, Gene Dev. 19: 1–49.PubMedGoogle Scholar
  41. Gregory, W.A., Edmondson, J.C., Hatten, M.E., and Mason, C.A., 1988, Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro, J. Neurosci. 8: 1728–1738.PubMedGoogle Scholar
  42. Grote, E., and Novick, P., 1999, Promiscuity in Rab-SNARE interactions, Mol. Biol. Cell. 10: 4149–4161.PubMedGoogle Scholar
  43. Gundersen, G.G., and Bulinski, J.C., 1988, Selective stabilization of microtubules oriented toward the direction of cell migration, Proc. Natl. Acad. Sci. USA 85: 5946–5950.PubMedGoogle Scholar
  44. Heimann, K., Percival, J., Weiberger, R., Gunning, P., and Stow, J., 1999, Specific isoforms of actin-binding protein on distinct populations of Golgi-derived vesicles, J. Biol. Chem. 274: 10743–10750.PubMedGoogle Scholar
  45. Hirokawa, N., and Takemura, R., 2005, Molecular motors and mechanisms of directional transport in neurons, Nat. Rev. Neurosci. 6: 201–214.PubMedGoogle Scholar
  46. Horton, A., and Ehlers, M., 2003a, Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging, J. Neurosci. 23: 6188–6199.PubMedGoogle Scholar
  47. Horton A., and Ehlers, M., 2003b, Neuronal polarity and trafficking, Neuron 40: 277–295.PubMedGoogle Scholar
  48. Horton, A, and Ehlers, M., 2004, Secretory trafficking in neuronal dendrites, Nat. Cell Biol. 6: 585–591.PubMedGoogle Scholar
  49. Horton, A., Racz, B., Monson, E., Lin, A., Weinberg, R., and Ehlers, M., 2005, Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis, Neuron 48: 757–771.PubMedGoogle Scholar
  50. Huber, L., Dupree, P., and Dotti, C., 1995, A deficiency of the small GTPase rab8 inhibits membrane traffic in developing neurons, Mol. Cell. Biol. 15: 918–924.PubMedGoogle Scholar
  51. Itoh, K., Cheng, L., Kamei, Y., Fushiki, S., Kamiguchi, H., Gutwein, P., et al., 2004, Brain development in mice lacking L1–L1 homophilic adhesion, J. Cell Biol. 165: 145–154.PubMedGoogle Scholar
  52. Jan, J., and Jan, L., 2003, The control of dendritic development, Neuron 40: 229–242.PubMedGoogle Scholar
  53. Jareb, M., and Banker, G., 1997, Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture, J. Neurosci. 17: 8955–8963.PubMedGoogle Scholar
  54. Kaether, C., Skehel, P., and Dotti, C., 2000, Axonal membrane proteins are transported in distinct carriers: A two-color video microscopy study in cultured hippocampal neurons, Mol. Biol. Cell 11: 1213–1224.PubMedGoogle Scholar
  55. Kamal, A., Stokin, G., Yang, Z., Xia, C., and Goldstein, L.S., 2000, Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I, Neuron 28: 449–459.PubMedGoogle Scholar
  56. Kamiguchi, H., Hlavin, M., Yamasaki, M., and Lemmon, V., 1998, Adhesion molecules and inherited diseases of the human nervous system, Annu. Rev. Neurosci. 21: 97–125.PubMedGoogle Scholar
  57. Kesavapany, S., Lau, K., Ackerley, S., Banner, J., Shemilt, J., Cooper, J., et al., 2003, Identification of a novel, membrane-associated neuronal kinase, cyclin-dependent kinase 5/p35-regulated kinase, J. Neurosci. 23: 4975–4983.PubMedGoogle Scholar
  58. Krijnse-Locker, J., Parton, R., Fuller, S., Griffiths, G., and Dotti, C., 1995, The organization of the endoplasmic reticulum and the intermediate compartment in cultured rat hippocampal neurons, Mol. Biol. Cell. 6: 1315–1332.PubMedGoogle Scholar
  59. Kroschewski, R., Hall, A., and Mellman, I., 1999, Cdc42 controls secretion and endocytic transport to the basolateral plasma membrane of MDCK cells, Nat. Cell Biol. 1: 8–13.PubMedGoogle Scholar
  60. Kupfer, A., Louvard, D., and Singer, S.J., 1982, Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound, Proc. Natl. Acad. Sci. USA 79: 2603–2607.PubMedGoogle Scholar
  61. Kupfer, A., Dennert, G., and Singer, S.J., 1983, Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets, Proc. Natl. Acad. Sci. USA 80: 7224–7228.PubMedGoogle Scholar
  62. Kunda, P., Paglini, G., Kosik, K., Quiroga, S., and Cáceres, A., 2001, Evidence for the involvement of Tiam-1 in axon formation, J. Neurosci. 21: 2361–2372.PubMedGoogle Scholar
  63. Laurino, L., Xiaoxin X., de la Houssaye B., Sosa L., Dupras S., Cáceres A., et al., 2005, PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone, J. Cell Sci. 118: 3653–3662.PubMedGoogle Scholar
  64. Lee, K., Hrosales, J., Tang, D., and Wang, J., 1996, Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain, J. Biol. Chem. 271: 423–426.Google Scholar
  65. Lijedahl, M., Maeda, Y., Colanzi, A., Ayala, I., Van Lint, J., and Malhotra, V., 2001, Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network, Cell 104: 409–420.Google Scholar
  66. Lowenstein, P., Morrison, E., Bain, D., Shering, A., Banting, G., Douglas, P., et al., 1994, Polarized distribution of the trans-Golgi network marker TGN38 during the in vitro development of neocortical neurons: Effects of nocodazole and brefeldin A, Eur. J. Neurosci. 6: 1453–65.PubMedGoogle Scholar
  67. Luna, A., Matas, O., Martinez-Menarguez, J., Mato, E., Duran, J., Ballesta, J., et al., 2002, Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP, Mol. Biol. Cell. 13: 866–879.PubMedGoogle Scholar
  68. Mascotti, F., Cáceres, A., Pfenninger, K., and Quiroga, S., 1997, Expression and distribution of IGF-1 receptors containing a beta-subunit variant (betagc) in developing neurons, J. Neurosci. 17: 1447–1459.PubMedGoogle Scholar
  69. Matas, O., Martinez-Menarguez, J., and Egea, G., 2004, Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes, Traffic 5: 838–46.PubMedGoogle Scholar
  70. Morfini, G., Rosa, A., Quiroga, S., Kosik, K., and Cáceres, A., 1997, Suppression of KIF2 alters the distribution of a growth cone non-synaptic membrane receptor and inhibits neurite outgrowth, J. Cell Biol. 138: 657–669.PubMedGoogle Scholar
  71. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N., and Brady, S.T., 2002, Glycogen synthase kinase-3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility, EMBO J. 23: 281–293.Google Scholar
  72. Morfini, G., Szebenyi, G., Brown, H., Pant, H., Pigino, G., DeBoer, S., et al., 2004, A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons, EMBO J. 23: 2235–2245.PubMedGoogle Scholar
  73. Musch, A., Cohen, D., Kreitzer, G., and Rodriguez-Boulan, E., 2001, Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network, EMBO J. 20: 2171–2179.PubMedGoogle Scholar
  74. Orth, J., and McNiven, M., 2003, Dynamin at the actin-membrane interface, Curr. Opin. Cell Biol. 15: 31–39.PubMedGoogle Scholar
  75. Nikolic, M., Chou, M., Lu, W., Mayer, B., and Tsai, L-H., 1998, The p35/Cdk5 kinase is a neuron specific Rac effector and inhibits PAK1 activity, Nature 395: 194–198.PubMedGoogle Scholar
  76. Nishimura, T., Yamaguchi, T., Katsukiro, K., Yoshizawa, M., Nabeshima, Y., Ohno, S., et al., 2005, Par6-Par3 mediates Cdc42-induced Rac activation through the Rac GEF STEF/Tiam1, Nat. Cell Biol. 7: 270–277.PubMedGoogle Scholar
  77. Paglini, G., and Cáceres, A., 2001, The role of cdk5–p35 kinase in neuronal development, Eur. J. Biochem. 268: 1528–1533.PubMedGoogle Scholar
  78. Paglini, G., Pigino, G., Morfini, G., Kunda, P., Maccioni, R., Quiroga, S., et al., 1998, Evidence for the participation of the neuron-specific activator p35 during laminin-enhanced axonal growth, J. Neurosci. 18: 9858–9869.PubMedGoogle Scholar
  79. Paglini, G., Peris, L., Diez-Guerra, J., Quiroga, S., and Cáceres, A., 2001a, The Cdk5–p35 kinase associates with the Golgi apparatus and regulates membrane traffic, EMBO Rep. 2: 1139–1144.PubMedGoogle Scholar
  80. Palazzo, A.F., Joseph, H.L., Chen, Y.J., Dujardin, D.L., Alberts, A.S., Pfister, K.K., et al., 2001, Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization, Curr. Biol. 11: 1536–1541.PubMedGoogle Scholar
  81. Pfeffer, S., 1996, Transport vesicle docking: SNAREs and associates, Annu. Rev. Cell Dev. Biol. 12: 441–461.PubMedGoogle Scholar
  82. Pfenninger, K.H., and Friedman, L.B., 1993, Sites of plasmalemmal expansion in growth cones, Dev. Brain Res. 71: 181–192.Google Scholar
  83. Pfenninger, K.H., Laurino, L., Peretti, D., Wang, X., Rosso, S., Morfini, G., et al., 2003, Regulation of membrane expansion at the nerve growth cone, J. Cell Sci. 16: 1209–1217.Google Scholar
  84. Peretti, D., Peris, L., Rosso, S., Quiroga, S., and Cáceres, A., 2000, Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles, J. Cell Biol. 149: 141–152.PubMedGoogle Scholar
  85. Prigozhina, N., and Waterman-Storer, C., 2004, Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility, Curr. Biol. 14: 88–98.PubMedGoogle Scholar
  86. Qu, J., Li, X., Novitch, B., Zheng, Y., Kohn, M., Xie, J., et al., 2003, PAK4 kinase is essential for embryonic viability and for proper neuronal development, Mol. Cell. Biol. 20: 7122–7133.Google Scholar
  87. Quiroga, S., Garofalo, R., and Pfenninger, K., 1995, Insulin-like growth factor I receptors of fetal brain are enriched in nerve growth cones and contain a beta-subunit variant, Proc. Natl. Acad. Sci. USA 92: 4309–4312.PubMedGoogle Scholar
  88. Ratner, N., Bloom, G., and Brady, S.T., 1998, A role for Cdk5 kinase in fast anterograde axonal transport: novel effects of olomoucine and the APC tumor suppressor protein, J. Neurosci. 18: 7717–7726.PubMedGoogle Scholar
  89. Ridley, A., 2001, Rho proteins: Linking signaling with membrane trafficking, Traffic 2: 303–310.PubMedGoogle Scholar
  90. Rosso, S., Bollati, F., Bisbal, M., Peretti, D., Sumi, T., Nakamura, T., et al., 2004, LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons, Mol. Biol. Cell 15: 3433–3449.PubMedGoogle Scholar
  91. Rothman, J.E., and Warren, G., 1994, Implications of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4: 220–233.PubMedGoogle Scholar
  92. Rozelle, A.L., Machesky, L., Yamamoto, Y., Driessens, M., Insall, R., Roth, M., et al., 2000, Phosphatidylinositol 4, 5 bisphosphate induces actin-based movements of raft-enriched vesicles through WASP-Arp2/3, Curr. Biol. 10: 311–320.PubMedGoogle Scholar
  93. Sarmiere, P., and Bamburg, J., 2004, Regulation of the neuronal actin cytoskeleton by ADF/cofilin, J. Neurobiol. 58: 103–117.PubMedGoogle Scholar
  94. Shi, S., Jan, L.Y., Jan, N.Y., 2003, Hippocampal neuronal polarity specified by spatially localized mPar3.mPar6 and PI30kinase activity, Cell 112: 63–75.PubMedGoogle Scholar
  95. Silverman, M., Kaech, S., Jareb, M., Burack, M., Vogt, L., Sonderegger, P., et al., 2001, Sorting and directed transport of membrane proteins during development of hippocampal neurons in culture, Proc. Natl. Acad. Sci. USA 98: 7051–7057.PubMedGoogle Scholar
  96. Simons, K., and Zerial, M., 1993, Rab proteins and the road maps for intracellular transport, Neuron 11: 789–799.PubMedGoogle Scholar
  97. Stamnes, M., 2002, Regulating the actin cytoskeleton during vesicular transport, Curr. Opin. Cell Biol. 14: 428–433.PubMedGoogle Scholar
  98. Takeda, S., Yamazaki, H., Seog, D., Kanai, Y., Terada, S., and Hirokawa, N., 2000, Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building, J. Cell Biol. 148: 1255–1265.PubMedGoogle Scholar
  99. Tang, B., 2001, Protein trafficking mechanisms associated with neurite outgrowth and polarized sorting in neurons, J. Neurochem. 79: 923–930.PubMedGoogle Scholar
  100. Valderrama, F., Luna, A., Babia, T., Martinez-Menarguez, J., Ballesta, J., Barth, H., et al., 2000, The Golgi-associated COPI-coated buds and vesicles contain beta/gamma –actin, Proc. Natl. Acad. Sci. USA 97: 1560–1565.PubMedGoogle Scholar
  101. Valderrama, F., Duran, J., Babia, T., Barth, H., Renau-Piqueras, J., and Egea, G., 2001, Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells, Traffic 2: 717–726.PubMedGoogle Scholar
  102. Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., et al., 2002, Protein kinase D: an intracellular traffic regulator on the move, Trends Cell Biol. 12: 193–200.PubMedGoogle Scholar
  103. Wang, F., Herzmark, P., Weiner, O.D., Srinivasan, S., Servant, G., and Bourne, H.R., 2002, Lipids products of PI(3) Ks maintain persistent cell polarity and directed motility in neutrophils, Nat. Cell Biol. 4: 509–512.Google Scholar
  104. Weiner, O.D., Neilsen, P., Prestwich, G., Kirschner, M., Cantley, L., and Bourne, H.R., 2002, A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity, Nat. Cell Biol. 4: 509–512.PubMedGoogle Scholar
  105. Wieland, F., Gleason, M., Serafini, T., and Rothman, J., 1987, The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50: 289–300.PubMedGoogle Scholar
  106. Wiggin, R., Fawcett, J., and Pawson, T., 2005, Polarity proteins in axon specification and synaptogenesis, Dev. Cell 8: 803–816.PubMedGoogle Scholar
  107. Yeaman, C., Ayala, I., Wright, J., Bard, F., Bossard, C., Ang, A., et al., 2004, Protein kinase D regulates basolateral membrane protein exit from the trans-Golgi network, Nat. Cell Biol. 6: 106–112.PubMedGoogle Scholar
  108. Young, Jr., W., Lutz, M., and Blackburn, W., 1992, Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates, J. Biol. Chem. 267: 12011–12015.PubMedGoogle Scholar
  109. Zmuda, J., and Rivas, R., 1998, The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro, Cell Motil. Cytosk. 41: 18–38.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alfredo Cáceres
    • 1
  • Gabriela Paglini
    • 2
  • Santiago Quiroga
    • 3
  • Adriana Ferreira
    • 4
  1. 1.Instituto Investigacion Medica Mercedes y Martín FerreyraINIMEC-CONICETCordobaArgentina
  2. 2.Instituto Investigacion Medica Mercedes y Martín FerreyraINIMEC-CONICETCordobaArgentina
  3. 3.Departamento Quimica Biologica, Facultad Ciencias Quimicas (UNC)CIQUIBIC-CONICETCordobaArgentina
  4. 4.Institute for Neuroscience and Department of Cell and Molecular BiologyNorthwestern UniversityChicagoUSA

Personalised recommendations