Exocytic Mechanisms for Axonal and Dendritic Growth

  • Thierry Galli
  • Philipp Alberts


Neurite Outgrowth Growth Cone Membrane Fusion Dendritic Growth Neural Cell Adhesion Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Advani, R.J., Yang, B., Prekeris, R., Lee, K.C., Klumperman, J., and Scheller, R.H., 1999, VAMP-7 mediates vesicular transport from endosomes to lysosomes, J. Cell Biol. 146: 765–775.PubMedGoogle Scholar
  2. Alberts, P., Rudge, R., Hinners, I., Muzerelle, A., MartinezArca, S., Irinopoulou, T., et al., 2003, Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion, Mol. Biol. Cell 14: 4207–4220.PubMedGoogle Scholar
  3. Alberts, P., Rudge, R., Irinopoulou, T., Danglot, L., Gauthier-Rouviere, C., Galli, T., 2006, Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane, Mol. Biol. Cell. 17: 1194–203.PubMedGoogle Scholar
  4. Allen, W.E., Zicha, D., Ridley, A.J., and Jones, G.E., 1998, A role for Cdc42 in macrophage chemotaxis, J. Cell Biol. 141: 1147–1157.PubMedGoogle Scholar
  5. Andrews, N.W., 2000, Regulated secretion of conventional lysosomes, Trends Cell Biol. 10: 316–321.PubMedGoogle Scholar
  6. Antonin, W., Holroyd, C., Fasshauer, D., Pabst, S., vonMollard, G.F., and Jahn, R., 2000, A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function, EMBO J. 19: 6453–6464.Google Scholar
  7. Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K., and Broadie, K., 1999, Drosophila Unc-13 is essential for synaptic transmission, Nat. Neurosci. 2: 965–971.PubMedGoogle Scholar
  8. Balch, W.E., Dunphy, W.G., Braell, W.A., and Rothman, J.E., 1984, Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine, Cell 39: 405–416.PubMedGoogle Scholar
  9. Baumert, M., Maycox, P.R., Navone, F., De Camilli, P., and Jahn, R., 1989, Synaptobrevin: An integral membrane protein of 18, 000 daltons present in small synaptic vesicle of rat brain, EMBO J. 8: 379–384.PubMedGoogle Scholar
  10. Bennett, M.K., Calakos, N., and Scheller, R.H., 1992, Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones, Science 257: 255–259.PubMedGoogle Scholar
  11. Bentley, D., and Toroian-Raymond, A., 1986, Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment, Nature 323: 712–715.PubMedGoogle Scholar
  12. Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., et al., 1993a, Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25, Nature 365: 160–163.PubMedGoogle Scholar
  13. Blasi, J., Chapman, E.R., Yamasaki, S., Binz, T., Niemann, H., and Jahn, R., 1993b, Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin, EMBO J. 12: 4821–4828.PubMedGoogle Scholar
  14. Block, M.R., and Rothman, J.E., 1992, Purification of N-ethylmaleimide-sensitive fusion protein, Methods Enzymol 219: 300–309.PubMedGoogle Scholar
  15. Bogdanovic, A., Bruckert, F., Morio, T., and Satre, M., 2000, A syntaxin 7 homologue is present in Dictyostelium discoideum endosomes and controls their homotypic fusion, J. Biol. Chem. 275: 36691–36697.PubMedGoogle Scholar
  16. Bogdanovic, A., Bennett, N., Kieffer, S., Louwagie, M., Morio, T., Garin, J., et al., 2002, Syntaxin 7, Syntaxin 8, Vti1 and VAMP7 form an active SNARE complex for early macropinocytic compartment fusion in Dictyostelium discoideum, Biochem. J. 15: 29–39.Google Scholar
  17. Braun, V., Fraisier, V., Raposo, G., Hurbain, I., Sibarita, J.B., Chavrier, P., et al., 2004, TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages, EMBO J. 23: 4166–4176.PubMedGoogle Scholar
  18. Brummendorf, T., Kenwrick, S., and Rathjen, F.G., 1998, Neural cell recognition molecule L1: From cell biology to human hereditary brain malformations, Curr. Opin. Neurobiol. 8: 87–97.PubMedGoogle Scholar
  19. Buchstaller, A., Kunz, S., Berger, P., Kunz, B., Ziegler, U., Rader, C., et al., 1996, Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion, J. Cell Biol. 135: 1593–1607.PubMedGoogle Scholar
  20. Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C., and Rougon, G., 2000, Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance, Neuron 27: 237–249.PubMedGoogle Scholar
  21. Castellani, V., De Angelis, E., Kenwrick, S., and Rougon, G., 2002, Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A, EMBO J. 21: 6348–6357.PubMedGoogle Scholar
  22. Castellani, V., Falk, J., and Rougon, G., 2004, Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM, Mol. Cell. Neurosci. 26: 89–100.PubMedGoogle Scholar
  23. Challacombe, J.F., Snow, D.M., and Letourneau, P.C., 1996, Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue, J. Cell Sci. 109: 2031–2040.PubMedGoogle Scholar
  24. Chien, C.B., Rosenthal, D.E., Harris, W.A., and Holt, C.E., 1993, Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain, Neuron 11: 237–251.PubMedGoogle Scholar
  25. Chieregatti, E., Chicka, M.C., Chapman, E.R., and Baldini, G., 2004, SNAP-23 functions in docking/fusion of granules at low Ca2+, Mol. Biol. Cell 15: 1918–1930.PubMedGoogle Scholar
  26. Clary, D.O., Griff, I.C., and Rothman, J.E., 1990, SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast, Cell 61: 709–721.PubMedGoogle Scholar
  27. Coco, S., Raposo, G., Martinez, S., Fontaine, J.J., Takamori, S., Zahraoui, A., et al., 1999, Subcellular localization of tetanus neurotoxin-insensitive vesicle-associated membrane protein (VAMP)/VAMP7 in neuronal cells: Evidence for a novel membrane compartment, J. Neurosci. 19: 9803–9812.PubMedGoogle Scholar
  28. Cohen, N.R., Taylor, J.S., Scott, L.B., Guillery, R.W., Soriano, P., and Furley, A.J., 1998, Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1, Curr. Biol. 8: 26–33.PubMedGoogle Scholar
  29. Cole, R.A., Synek, L., Zarsky, V., and Fowler, J.E., 2005, SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth, Plant Physiol. 138: 2005–2018.PubMedGoogle Scholar
  30. Craig, A.M., Wyborski, R.J., and Banker, G., 1995, Preferential addition of newly synthesized membrane protein at axonal growth cones, Nature 375: 592–594.PubMedGoogle Scholar
  31. D'Esposito, M., Ciccodicola, A., Gianfrancesco, F., Esposito, T., Flagiello, L., Mazzarella, R., et al., 1996, A synaptobrevin-like gene in the Xq28 pseudoautosomal region undergoes X inactivation, Nat. Genet. 13: 227–229.PubMedGoogle Scholar
  32. Dahme, M., Bartsch, U., Martini, R., Anliker, B., Schachner, M., and Mantei, N., 1997, Disruption of the mouse L1 gene leads to malformations of the nervous system, Nat. Genet. 17: 346–349.PubMedGoogle Scholar
  33. Davis, J.Q., and Bennett, V., 1994, Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules, J. Biol. Chem. 269: 27163–27166.PubMedGoogle Scholar
  34. de Anda, F.C., Pollarolo, G., Da Silva, J.S., Camoletto, P.G., Feiguin, F., and Dotti, C.G., 2005, Centrosome localization determines neuronal polarity, Nature 436: 704–708.PubMedGoogle Scholar
  35. Deitcher, D.L., Ueda, A., Stewart, B.A., Burgess, R.W., Kidokoro, Y., and Schwarz, T.L., 1998, Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin, J. Neurosci. 18: 2028–2039.PubMedGoogle Scholar
  36. Dent, E.W., and Kalil, K., 2001, Axon branching requires interactions between dynamic microtubules and actin filaments, J. Neurosci. 21: 9757–9769.PubMedGoogle Scholar
  37. DiAntonio, A., Haghighi, A.P., Portman, S.L., Lee, J.D., Amaranto, A.M., and Goodman, C.S., 2001, Ubiquitination-dependent mechanisms regulate synaptic growth and function, Nature 412: 449–452.PubMedGoogle Scholar
  38. Dickson, B.J., 2002, Molecular mechanisms of axon guidance, Science 298: 1959–1964.PubMedGoogle Scholar
  39. Dickson, T.C., Mintz, C.D., Benson, D.L., and Salton, S.R., 2002, Functional binding interaction identified between the axonal CAM L1 and members of the ERM family, J. Cell Biol. 157: 1105–1112.PubMedGoogle Scholar
  40. Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Sudhof, T.C., et al., 1999, A conformational switch in syntaxin during exocytosis: Role of munc18, EMBO J. 18: 4372–4382.PubMedGoogle Scholar
  41. Etienne-Manneville, S., and Hall, A., 2001, Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta, Cell 106: 489–498.PubMedGoogle Scholar
  42. Filippini, F., Rossi, V., Galli, T., Budillon, A., D'Urso, M., and D'Esposito, M., 2001, Longins: A new evolutionary conserved VAMP family sharing a novel SNARE domain, Trends Biochem. Sci. 26: 407–409.PubMedGoogle Scholar
  43. Forscher, P., and Smith, S.J., 1988, Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone, J. Cell Biol. 107: 1505–1516.PubMedGoogle Scholar
  44. Futerman, A.H., and Banker, G.A., 1996, The economics of neurite outgrowth–the addition of new membrane to growing axons, Trends. Neurosci. 19: 144–149.PubMedGoogle Scholar
  45. Galli, T., Zahraoui, A., Vaidyanathan, V.V., Raposo, G., Tian, J.M., Karin, M., et al., 1998, A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells, Mol. Biol. Cell 9: 1437–1448.PubMedGoogle Scholar
  46. Gasman, S., Kalaidzidis, Y., and Zerial, M., 2003, RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase, Nat. Cell Biol. 5: 195–204.PubMedGoogle Scholar
  47. Gonzalez, L.C., Weis, W.I., and Scheller, R.H., 2001, A novel SNARE N-terminal domain revealed by the crystal structure of Sec22b, J. Biol. Chem. 276: 24203–24211.PubMedGoogle Scholar
  48. Grindstaff, K.K., Yeaman, C., Anandasabapathy, N., Hsu, S.C., RodriguezBoulan, E., Scheller, R.H., et al., 1998, Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells, Cell 93: 731–740.PubMedGoogle Scholar
  49. Grosse, G., Grosse, J., Tapp, R., Kuchinke, J., Gorsleben, M., Fetter, I., et al., 1999, SNAP-25 requirement for dendritic growth of hippocampal neurons, J. Neurosci. Res. 56: 539–546.PubMedGoogle Scholar
  50. Hammer, J.A., III, and Wu, X.S., 2002, Rabs grab motors: Defining the connections between Rab GTPases and motor proteins, Curr. Opin. Cell Biol. 14: 69–75.PubMedGoogle Scholar
  51. Hattula, K., and Peranen, J., 2000, FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis, Curr. Biol. 10: 1603–1606.PubMedGoogle Scholar
  52. Hattula, K., Furuhjelm, J., Arffman, A., and Peranen, J., 2002, A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport, Mol. Biol. Cell 13: 3268–3280.PubMedGoogle Scholar
  53. Hausauer, D.L., Gerami-Nejad, M., Kistler-Anderson, C., and Gale, C.A., 2005, Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p, Eukaryot. Cell 4: 1273–1286.PubMedGoogle Scholar
  54. Hibi, T., Hirashima, N., and Nakanishi, M., 2000, Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes, Biochem. Biophys. Res. Commun. 271: 36–41.PubMedGoogle Scholar
  55. Higgins, D., Burack, M., Lein, P., and Banker, G., 1997, Mechanisms of neuronal polarity, Curr. Opin. Neurobiol. 7: 599–604.PubMedGoogle Scholar
  56. Hoppe, A.D., and Swanson, J.A., 2004, Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis, Mol. Biol. Cell 15: 3509–3519.PubMedGoogle Scholar
  57. Hu, C., Ahmed, M., Melia, T.J., Sollner, T.H., Mayer, T., and Rothman, J.E., 2003, Fusion of cells by flipped SNAREs, Science 300: 1745–1749.PubMedGoogle Scholar
  58. Ignelzi, M.A., Jr., Miller, D.R., Soriano, P., and Maness, P.F., 1994, Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1, Neuron 12: 873–884.PubMedGoogle Scholar
  59. Ikin, A.F., Annaert, W.G., Takei, K., De Camilli, P., Jahn, R., Greengard, P., et al., 1996, Alzheimer amyloid protein precursor is localized in nerve terminal preparations to Rab5-containing vesicular organelles distinct from those implicated in the synaptic vesicle pathway, J. Biol. Chem. 271: 31783–31786.PubMedGoogle Scholar
  60. Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C., and Simons, K., 1995, Different requirements for NSF, SNAP, and rab proteins in apical and basolateral transport in MDCK cells, Cell 81: 571–580.PubMedGoogle Scholar
  61. Jahn, R., Lang, T., and Sudhof, T.C., 2003, Membrane fusion, Cell. 112: 519–533.PubMedGoogle Scholar
  62. Jareb, M., and Banker, G., 1997, Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture, J. Neurosci. 17: 8955–8963.PubMedGoogle Scholar
  63. Kamiguchi, H., and Lemmon, V., 2000, Recycling of the cell adhesion molecule L1 in axonal growth cones, J. Neurosci. 20: 3676–3686.PubMedGoogle Scholar
  64. Kamiguchi, H., and Yoshihara, F., 2001, The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones, J. Neurosci. 21: 9194–9203.PubMedGoogle Scholar
  65. Kamiguchi, H., Long, K.E., Pendergast, M., Schaefer, A.W., Rapoport, I., Kirchhausen, T., et al., 1998, The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway, J. Neurosci. 18: 5311–5321.PubMedGoogle Scholar
  66. Kaplan, K.B., Swedlow, J.R., Varmus, H.E., and Morgan, D.O., 1992, Association of p60c-src with endosomal membranes in mammalian fibroblasts, J. Cell Biol. 118: 321–333.PubMedGoogle Scholar
  67. Kaufmann, N., Wills, Z.P., and Van Vactor, D., 1998, Drosophila Rac1 controls motor axon guidance, Development 125: 453–461.PubMedGoogle Scholar
  68. Kayyem, J.F., Roman, J.M., de la Rosa, E.J., Schwarz, U., and Dreyer, W.J., 1992, Bravo/Nr-CAM is closely related to the cell adhesion molecules L1 and Ng-CAM and has a similar heterodimer structure, J. Cell Biol. 118: 1259–1270.PubMedGoogle Scholar
  69. Lafont, F., Verkade, P., Galli, T., Wimmer, C., Louvard, D., and Simons, K., 1999, Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells, Proc. Nat. Acad. Sci. USA 96: 3734–3738.PubMedGoogle Scholar
  70. Lemmon, V., Farr, K.L., and Lagenaur, C., 1989, L1-mediated axon outgrowth occurs via a homophilic binding mechanism, Neuron 2: 1597–1603.PubMedGoogle Scholar
  71. Li, Z., Van Aelst, L., and Cline, H.T., 2000, Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo, Nat. Neurosci. 3: 217–225.PubMedGoogle Scholar
  72. Lin, C.H., and Forscher, P., 1995, Growth cone advance is inversely proportional to retrograde F-actin flow, Neuron 14: 763–771.PubMedGoogle Scholar
  73. Lin, C.H., Espreafico, E.M., Mooseker, M.S., and Forscher, P., 1996, Myosin drives retrograde F-actin flow in neuronal growth cones, Neuron 16: 769–782.PubMedGoogle Scholar
  74. Luo, L., Hensch, T.K., Ackerman, L., Barbel, S., Jan, L.Y., and Jan, Y.N., 1996, Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines, Nature 379: 837–840.PubMedGoogle Scholar
  75. Martinez-Arca, S., Alberts, P., and Galli, T., 2000a, Clostridial neurotoxin-insensitive vesicular SNAREs in exocytosis and endocytosis, Biol. Cell 92: 449–453.PubMedGoogle Scholar
  76. Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D., and Galli, T., 2000b, Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth, J. Cell Biol. 149: 889–899.PubMedGoogle Scholar
  77. Martinez-Arca, S., Coco, S., Mainguy, G., Schenk, U., Alberts, P., Bouille, P., et al., 2001, A common exocytotic mechanism mediates axonal and dendritic outgrowth, J. Neurosci. 21: 3830–3838.PubMedGoogle Scholar
  78. Martinez-Arca, S., Proux-Gillardeaux, V., Alberts, P., Louvard, D., and Galli, T., 2003a, Ectopic expression of syntaxin 1 in the ER redirects TI-VAMP- and cellubrevin-containing vesicles, J. Cell Sci. 116: 2805–2816.PubMedGoogle Scholar
  79. Martinez-Arca, S., Rudge, R., Vacca, M., Raposo, G., Camonis, J., Proux-Gillardeaux, V., et al., 2003b, A dual mechanism controlling the localization and function of exocytic v-SNAREs, Proc. Natl. Acad. Sci. USA 100: 9011–9016.PubMedGoogle Scholar
  80. May, R.C., and Machesky, L.M., 2001, Phagocytosis and the actin cytoskeleton, J. Cell Sci. 114: 1061–1077.PubMedGoogle Scholar
  81. Murthy, M., Garza, D., Scheller, R.H., and Schwarz, T.L., 2003, Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists, Neuron 37: 433–447.PubMedGoogle Scholar
  82. Nonet, M.L., Saifee, O., Zhao, H.J., Rand, J.B., and Wei, L.P., 1998, Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J. Neurosci. 18: 70–80.PubMedGoogle Scholar
  83. Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21: 205–215.PubMedGoogle Scholar
  84. Osen-Sand, A., Staple, J.K., Naldi, E., Schiavo, G., Rossetto, O., Petitpierre, S., et al., 1996, Common and distinct fusion proteins in axonal growth and transmitter release, J. Comp. Neurol. 367: 222–234.PubMedGoogle Scholar
  85. Oyler, G.A., Polli, J.W., Higgins, G.A., Wilson, M.C., and Billingsley, M.L., 1992, Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC-12 cells and human SMS-KCNR neuroblastoma cells, Dev. Brain Res. 65: 133–146.Google Scholar
  86. Paglini, G., Kunda, P., Quiroga, S., Kosik, K., and Caceres, A., 1998, Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons, J. Cell Biol. 143: 443–455.PubMedGoogle Scholar
  87. Parlati, F., Weber, T., McNew, J.A., Westermann, B., Sollner, T.H., and Rothman, J.E., 1999, Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain, Proc. Natl. Acad. Sci. USA 96: 12565–12570.PubMedGoogle Scholar
  88. Prochiantz, A., 1995, Neuronal polarity: Giving neurons heads and tails, Neuron 15: 743–746.PubMedGoogle Scholar
  89. Rao, S.K., Huynh, C., Proux-Gillardeaux, V., Galli, T., and Andrews, N.W., 2004, Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis, J. Biol. Chem. 279: 20471–20479.PubMedGoogle Scholar
  90. Reddy, A., Caler, E.V., and Andrews, N.W., 2001, Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell 106: 157–169.PubMedGoogle Scholar
  91. Rothman, J.E., 1994, Mechanisms of intracellular protein transport, Nature 372: 55–63.PubMedGoogle Scholar
  92. Rothman, J.E., and Warren, G., 1994, Implication of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4: 220–233.PubMedGoogle Scholar
  93. Sabo, S.L., Ikin, A.F., Buxbaum, J.D., and Greengard, P., 2003, The amyloid precursor protein and its regulatory protein, FE65, in growth cones and synapses in vitro and in vivo, J. Neurosci. 23: 5407–5415.PubMedGoogle Scholar
  94. Schaefer, A.W., Kamiguchi, H., Wong, E.V., Beach, C.M., Landreth, G., and Lemmon, V., 1999, Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization, J. Biol. Chem. 274: 37965–37973.PubMedGoogle Scholar
  95. Schaefer, A.W., Kamei, Y., Kamiguchi, H., Wong, E.V., Rapoport, I., Kirchhausen, T., et al., 2002, L1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1, J. Cell Biol. 157: 1223–1232.PubMedGoogle Scholar
  96. Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., DasGupta, B.R. et al., 1992, Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin, Nature 359: 832–835.PubMedGoogle Scholar
  97. Schmid, R.S., Pruitt, W.M., and Maness, P.F., 2000, A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis, J. Neurosci. 20: 4177–4188.PubMedGoogle Scholar
  98. Schmidt, C.E., Dai, J., Lauffenburger, D.A., Sheetz, M.P., and Horwitz, A.F., 1995, Integrin-cytoskeletal interactions in neuronal growth cones, J. Neurosci. 15: 3400–3407.PubMedGoogle Scholar
  99. Schoch, S., Cibelli, G., Magin, A., Steinmuller, L., and Thiel, G., 2001a, Modular structure of cAMP response element binding protein 2 (CREB2), Neurochem. Int. 38: 601–608.PubMedGoogle Scholar
  100. Schoch, S., Deak, F., Konigstorfer, A., Mozhayeva, M., Sara, Y., Sudhof, T.C., et al., 2001b, SNARE function analyzed in synaptobrevin/VAMP knockout mice, Science 294: 1117–1122.PubMedGoogle Scholar
  101. Schwamborn, J.C., and Puschel, A.W., 2004, The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity, Nat. Neurosci. 7: 923–929.PubMedGoogle Scholar
  102. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E., 1993a, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell 75: 409–418.PubMedGoogle Scholar
  103. Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., et al., 1993b, SNAP receptors implicated in vesicle targeting and fusion, Nature 362: 318–324.PubMedGoogle Scholar
  104. Stewart, B.A., Mohtashami, M., Rivlin, P., Deitcher, D.L., Trimble, W.S., and Boulianne, G.L., 2002, Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses, J. Neurobiol. 51: 261–271.PubMedGoogle Scholar
  105. Suter, D.M., and Forscher, P., 1998, An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance, Curr. Opin. Neurobiol. 8: 106–116.PubMedGoogle Scholar
  106. Suter, D.M., and Forscher, P., 2001, Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by Src family tyrosine kinase activity, J. Cell Biol. 155: 427–438.PubMedGoogle Scholar
  107. Suter, D.M., Errante, L.D., Belotserkovsky, V., and Forscher, P., 1998, The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling, J. Cell Biol. 141: 227–240.PubMedGoogle Scholar
  108. Sweeney, S.T., and Davis, G.W., 2002, Unrestricted synaptic growth in spinster-a late endosomal protein implicated in TGF-beta-mediated synaptic growth regulation, Neuron 36: 403–416.PubMedGoogle Scholar
  109. TerBush, D.R., Maurice, T., Roth, D., and Novick, P., 1996, The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae, EMBO J. 15: 6483–6494.PubMedGoogle Scholar
  110. Tessier-Lavigne, M., and Goodman, C.S., 1996, The molecular biology of axon guidance, Science 274: 1123–1133.PubMedGoogle Scholar
  111. Thelen, K., Kedar, V., Panicker, A.K., Schmid, R.S., Midkiff, B.R., and Maness, P.F., 2002, The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins, J. Neurosci. 22: 4918–4931.PubMedGoogle Scholar
  112. Tochio, H., Tsui, M.M.K., Banfield, D.K., and Zhang, M.J., 2001. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p, Science 293: 698–702.PubMedGoogle Scholar
  113. Van Aelst, L., and Cline, H.T., 2004, Rho GTPases and activity-dependent dendrite development, Curr. Opin. Neurobiol. 14: 297–304.PubMedGoogle Scholar
  114. Verhage, M., Maia, A.S., Plomp, J.J., Brussaard, A.B., Heeroma, J.H., Vermeer, H., et al., 2000, Synaptic assembly of the brain in the absence of neurotransmitter secretion, Science 287: 864–869.PubMedGoogle Scholar
  115. Vogt, L., Giger, R.J., Ziegler, U., Kunz, B., Buchstaller, A., Hermens, W., et al., 1996, Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane, Curr. Biol. 6: 1153–1158.PubMedGoogle Scholar
  116. Volkmer, H., Hassel, B., Wolff, J.M., Frank, R., and Rathjen, F.G., 1992, Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily, J. Cell Biol. 118: 149–161.PubMedGoogle Scholar
  117. Ward, D.M., Pevsner, J., Scullion, M.A., Vaughn, M., and Kaplan, J., 2000, Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages, Mol. Biol. Cell 11: 2327–2333.PubMedGoogle Scholar
  118. Washbourne, P., Cansino, V., Mathews, J.R., Graham, M., Burgoyne, R.D., and Wilson, M.C., 2001, Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting, Biochem. J. 357: 625–634.PubMedGoogle Scholar
  119. Washbourne, P., Thompson, P.M., Carta, M., Costa, E.T., Mathews, J.R., Lopez-Bendito, G., et al., 2002, Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis, Nat. Neurosci. 5: 19–26.PubMedGoogle Scholar
  120. Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., et al., 1998, SNAREpins: Minimal machinery for membrane fusion, Cell 92: 759–772.PubMedGoogle Scholar
  121. Wisco, D., Anderson, E.D., Chang, M.C., Norden, C., Boiko, T., Folsch, H., et al., 2003, Uncovering multiple axonal targeting pathways in hippocampal neurons, J. Cell Biol. 162: 1317–28.PubMedGoogle Scholar
  122. Zerial, M., and McBride, H., 2001, Rab proteins as membrane organizers, Nat. Rev. Mol. Cell Biol. 2: 107–117.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thierry Galli
    • 1
  • Philipp Alberts
    • 2
  1. 1.Team “Avenir” INSERM Membrane Traffic in Neuronal & Epithelial MorphogenesiUniversités Paris 6 & 7France
  2. 2.Department of Cell BiologyYale University School of MedicineNew HavenUSA

Personalised recommendations