Advertisement

Role of Microtubules and MAPs During Neuritogenesis

  • John K. Chilton
  • Phillip R. Gordon-Weeks

Keywords

Cell Biol Adenomatous Polyposis Coli Growth Cone Williams Syndrome Microtubule Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, F.J., Echeverri, C.J., Vallee, R.B., and Baas, P.W., 1998, Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon, J. Cell Biol. 140: 391–401.PubMedGoogle Scholar
  2. Akhmanova, A., and Hoogenraad, C.C., 2005, Microtubule plus-end-tracking proteins: Mechanisms and functions, Curr. Opin. Cell Biol. 17: 47–54.PubMedGoogle Scholar
  3. Akhmanova, A., Hoogenraad, C.C., Drabek, K., Stepanova, T., Dortland, B., Verkerk, T., et al., 2001, Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts, Cell 104: 923–935.PubMedGoogle Scholar
  4. Akhmanova, A., Mausset-Bonnefont, A.L., van Cappellen, W., Keijzer, N., Hoogenraad, C.C., Stepanova, T., et al., 2005, The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis, Genes Dev. 19: 2501–2515.PubMedGoogle Scholar
  5. Amos, L.A., 2004, Microtubule structure and its stabilisation,. Org. Biomol. Chem. 2: 2153–2160.PubMedGoogle Scholar
  6. Amos, L.A., and Schlieper, D., 2005, Microtubules and maps, Adv. Protein Chem. 71: 257–298.PubMedGoogle Scholar
  7. Arnal, I., Heichette, C., Diamantopoulos, G.S., and Chretien, D., 2004, CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues, Curr. Biol. 14: 2086–2095.PubMedGoogle Scholar
  8. Askham, J.M., Moncur, P., Markham, A.F., and Morrison, E.E., 2000, Regulation and function of the interaction between the APC tumour suppressor protein and EB1, Oncogene 19: 1950–1958.PubMedGoogle Scholar
  9. Askham, J.M., Vaughan, K.T., Goodson, H.V., and Morrison, E.E., 2002, Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13: 3627–3645.PubMedGoogle Scholar
  10. Baas, P.W., 1998, The role of motor proteins in establishing the microtubule arrays of axons and dendrites, J. Chem. Neuroanat. 14: 175–180.PubMedGoogle Scholar
  11. Baas, P.W., 2002, Microtubule transport in the axon, Int. Rev. Cytol. 212: 41–62.PubMedGoogle Scholar
  12. Baas, P.W., White, L.A., and Heidemann, S.R., 1987, Microtubule polarity reversal accompanies regrowth of amputated neuritis, Proc. Natl. Acad. Sci. USA 84: 5272–5276.PubMedGoogle Scholar
  13. Baas, P.W., Deitch, J.S., Black, M.M., and Banker, G.A., 1988, Polarity orientation of microtubules in hippocampal neurons: Uniformity in the axon and nonuniformity in the dendrite, Proc. Natl. Acad. Sci. USA 85: 8335–8339.PubMedGoogle Scholar
  14. Baas, P.W., Pienkowski, T.P., and Kosik, K.S., 1991, Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization, J. Cell Biol. 115: 1333–1344.PubMedGoogle Scholar
  15. Bamburg, J.R., Bray, D., and Chapman, K., 1986, Assembly of microtubules at the tip of growing axons, Nature 321: 788–790.PubMedGoogle Scholar
  16. Barth, A.I., Siemers, K.A., and Nelson, W.J., 2002, Dissecting interactions between EB1, microtubules and APC in cortical clusters at the plasma membrane, J. Cell Sci. 115: 1583–1590.PubMedGoogle Scholar
  17. Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A., and Korenberg, J.R., 1999, Bridging cognition, the brain and molecular genetics: Evidence from Williams syndrome, Trends Neurosci. 22: 197–207.PubMedGoogle Scholar
  18. Bentley, D., and Toroian-Raymond, A., 1986, Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment, Nature 323: 712–715.PubMedGoogle Scholar
  19. Berrueta, L., Kraeft, S.K., Tirnauer, J.S., Schuyler, S.C., Chen, L.B., Hill, D.E., et al., 1998, The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules, Proc. Natl. Acad. Sci. USA 95: 10596–10601.PubMedGoogle Scholar
  20. Bilbe, G., Delabie, J., Bruggen, J., Richener, H., Asselbergs, F. A., Cerletti, N., et al., 1992, Restin: A novel intermediate filament-associated protein highly expressed in the Reed-Sternberg cells of Hodgkin's disease, EMBO J. 11: 2103–2113.PubMedGoogle Scholar
  21. Billingsley, M.L., and Kincaid, R.L., 1997, Regulated phosphorylation and dephosphorylation of tau protein: Effects on microtubule interaction, intracellular trafficking and neurodegeneration, Biochem. J. 323: 577–591.PubMedGoogle Scholar
  22. Binder, L.I., Frankfurter, A., and Rebhun, L.I., 1985, The distribution of tau in the mammalian central nervous system, J. Cell Biol. 101: 1371–1378.PubMedGoogle Scholar
  23. Bouquet, C., Soares, S., von Boxberg, Y., Ravaille-Veron, M., Propst, F., and Nothias, F., 2004, Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons, J. Neurosci. 24: 7204–7213.PubMedGoogle Scholar
  24. Bradke, F., and Dotti, C.G., 2000, Establishment of neuronal polarity: Lessons from cultured hippocampal neurons, Curr. Opin. Neurobiol. 10: 574–581.PubMedGoogle Scholar
  25. Brandt, R., and Leschik, J., 2004, Functional interactions of tau and their relevance for Alzheimer's disease, Curr. Alzheimer Res. 1: 255–269.PubMedGoogle Scholar
  26. Brandt, R., Leger, J., and Lee, G., 1995, Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain, J. Cell Biol. 131: 1327–1340.PubMedGoogle Scholar
  27. Bruckenstein, D.A., and Higgins, D., 1988, Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. I. Conditions under which neurons form axons but not dendrites, Dev. Biol. 128: 324–336.PubMedGoogle Scholar
  28. Brugg, B., Reddy, D., and Matus, A., 1993, Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth, Neuroscience 52: 489–496.PubMedGoogle Scholar
  29. Bu, W., and Su, L.K., 2003, Characterization of functional domains of human EB1 family proteins, J. Biol. Chem. 278: 49721–49731.PubMedGoogle Scholar
  30. Buck, K.B., and Zheng, J.Q., 2002, Growth cone turning induced by direct local modification of microtubule dynamics, J. Neurosci. 22: 9358–9367.PubMedGoogle Scholar
  31. Caceres, A., and Kosik, K.S., 1990, Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature 343: 461–463.PubMedGoogle Scholar
  32. Caceres, A., Potrebic, S., and Kosik, K.S., 1991, The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons, J. Neurosci. 11: 1515–1523.PubMedGoogle Scholar
  33. Cahana, A., Escamez, T., Nowakowski, R.S., Hayes, N.L., Giacobini, M., von Holst, A., et al., 2001, Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization, Proc. Natl. Acad. Sci. USA 98: 6429–6434.PubMedGoogle Scholar
  34. Carvalho, P., Tirnauer, J.S., and Pellman, D., 2003, Surfing on microtubule ends, Trends Cell Biol. 13: 229–237.PubMedGoogle Scholar
  35. Caspi, M., Atlas, R., Kantor, A., Sapir, T., and Reiner, O., 2000, Interaction between LIS1 and doublecortin, two lissencephaly gene products, Hum. Mol. Genet. 9: 2205–2213.PubMedGoogle Scholar
  36. Cassimeris, L., Pryer, N.K., and Salmon, E.D., 1988, Real-time observations of microtubule dynamic instability in living cells, J. Cell Biol. 107: 2223–2231.PubMedGoogle Scholar
  37. Challacombe, J.F., Snow, D.M., and Letourneau, P.C., 1997, Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue, J. Neurosci. 17: 3085–3095.PubMedGoogle Scholar
  38. Chen, J., Kanai, Y., Cowan, N.J., and Hirokawa, N., 1992, Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons, Nature 360: 674–677.PubMedGoogle Scholar
  39. Chien, C.B., Rosenthal, D.E., Harris, W.A., and Holt, C.E., 1993, Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain, Neuron 11: 237–251.PubMedGoogle Scholar
  40. Choi, J.H., Bertram, P.G., Drenan, R., Carvalho, J., Zhou, H.H., and Zheng, X.F., 2002, The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase, EMBO Rep. 3: 988–994.PubMedGoogle Scholar
  41. Chrétien, D., Fuller, S.D., and Karsenti, E., 1995, Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates, J. Cell Biol. 129: 1311–1328.PubMedGoogle Scholar
  42. Ciani, L., and Salinas, P.C., 2005, WNTs in the vertebrate nervous system: From patterning to neuronal connectivity, Nat. Rev. Neurosci. 6: 351–362.PubMedGoogle Scholar
  43. Coquelle, F.M., Caspi, M., Cordelieres, F.P., Dompierre, J.P., Dujardin, D.L., Koifman, C., et al., 2002, LIS1, CLIP-170's key to the dynein/dynactin pathway, Mol. Cell Biol. 22: 3089–3102.PubMedGoogle Scholar
  44. Craig, A.M., and Banker, G., 1994, Neuronal polarity, Annu. Rev. Neurosci. 17: 267–310.PubMedGoogle Scholar
  45. Dawson, H.N., Ferreira, A., Eyster, M.V., Ghoshal, N., Binder, L.I., and Vitek, M.P., 2001, Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice, J. Cell Sci. 114: 1179–1187.PubMedGoogle Scholar
  46. De Zeeuw, C.I., Hoogenraad, C.C., Goedknegt, E., Hertzberg, E., Neubauer, A., Grosveld, F., et al., 1997, CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies, Neuron 19: 1187–1199.PubMedGoogle Scholar
  47. Deka, J., Kuhlmann, J., and Muller, O., 1998, A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein tau, Eur. J. Biochem. 253: 591–597.PubMedGoogle Scholar
  48. Del Rio, J.A., Gonzalez-Billault, C., Urena, J.M., Jimenez, E.M., Barallobre, M.J., Pascual, M., et al., 2004, MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance, Curr. Biol. 14: 840–850.PubMedGoogle Scholar
  49. Dent, E.W., and Gertler, F.B., 2003, Cytoskeletal dynamics and transport in growth cone motility and axon guidance, Neuron 40: 209–227.PubMedGoogle Scholar
  50. Dent, E.W., and Kalil, K., 2001, Axon branching requires interactions between dynamic microtubules and actin filaments, J. Neurosci. 21: 9757–9769.PubMedGoogle Scholar
  51. Dent, E.W., Callaway, J.L., Szebenyi, G., Baas, P.W., and Kalil, K., 1999, Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches, J. Neurosci. 19: 8894–8908.PubMedGoogle Scholar
  52. desPortes, V., Pinard, J.M., Billuart, P., Vinet, M.C., Koulakoff, A., Carrie, A., et al., 1998, A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, Cell 92: 51–61.Google Scholar
  53. Diamantopoulos, G.S., Perez, F., Goodson, H.V., Batelier, G., Melki, R., Kreis, T.E., and Rickard, J.E., 1999, Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly, J. Cell Biol. 144: 99–112.PubMedGoogle Scholar
  54. DiTella, M., Feiguin, F., Morfini, G., and Caceres, A., 1994, Microfilament-associated growth cone component depends upon Tau for its intracellular localization, Cell Motil. Cytoskeleton 29: 117–130.PubMedGoogle Scholar
  55. DiTella, M.C., Feiguin, F., Carri, N., Kosik, K.S., and Caceres, A., 1996, MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth, J. Cell Sci. 109: 467–477.PubMedGoogle Scholar
  56. Dotti, C.G., and Banker, G.A., 1987, Experimentally induced alteration in the polarity of developing neurons, Nature 330: 254–256.PubMedGoogle Scholar
  57. Drubin, D.G., and Kirschner, M.W., 1986, Tau protein function in living cells, J. Cell Biol. 103: 2739–2746.PubMedGoogle Scholar
  58. Edelmann, W., Zervas, M., Costello, P., Roback, L., Fischer, I., Hammarback, J.A., et al., 1996, Neuronal abnormalities in microtubule-associated protein 1B mutant mice, Proc. Natl. Acad. Sci. USA 93: 1270–1275.PubMedGoogle Scholar
  59. Erck, C., Peris, L., Andrieux, A., Meissirel, C., Gruber, A.D., Vernet, M., et al., 2005, A vital role of tubulin-tyrosine-ligase for neuronal organization, Proc. Natl. Acad. Sci. USA 102: 7853–7858.PubMedGoogle Scholar
  60. Esmaeli-Azad, B., McCarty, J.H., and Feinstein, S.C., 1994, Sense and antisense transfection analysis of tau function: Tau influences net microtubule assembly, neurite outgrowth and neuritic stability, J. Cell Sci. 107: 869–879.PubMedGoogle Scholar
  61. Etienne-Manneville, S., and Hall, A., 2003, Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity, Nature 421: 753–756.PubMedGoogle Scholar
  62. Etienne-Manneville, S., Manneville, J.B., Nicholls, S., Ferenczi, M.A., and Hall, A., 2005, Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization, J. Cell Biol. 170: 895–901.PubMedGoogle Scholar
  63. Faulkner, N.E., Dujardin, D.L., Tai, C.Y., Vaughan, K.T., O'Connell, C.B., Wang, Y., et al., 2000, A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function, Nat. Cell Biol. 2: 784–791.PubMedGoogle Scholar
  64. Ferreira, A., Busciglio, J., and Caceres, A., 1989, Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: Evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW-MAP2 and Tau, Brain Res. Dev. Brain Res. 49: 215–228.PubMedGoogle Scholar
  65. Folker, E.S., Baker, B.M., and Goodson, H.V., 2005, Interactions between CLIP-170, Tubulin, and Microtubules: Implications for the Mechanism of CLIP-170 Plus-End Tracking Behavior, Mol. Biol. Cell 16: 5373–5384.PubMedGoogle Scholar
  66. Francis, F., Koulakoff, A., Boucher, D., Chafey, P., Schaar, B., Vinet, M.C., et al., 1999, Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons, Neuron 23: 247–256.PubMedGoogle Scholar
  67. Friocourt, G., Chafey, P., Billuart, P., Koulakoff, A., Vinet, M.C., Schaar, B.T., et al., 2001, Doublecortin interacts with mu subunits of clathrin adaptor complexes in the developing nervous system, Mol. Cell. Neurosci. 18: 307–319.PubMedGoogle Scholar
  68. Friocourt, G., Koulakoff, A., Chafey, P., Boucher, D., Fauchereau, F., Chelly, J., et al., 2003, Doublecortin functions at the extremities of growing neuronal processes, Cereb. Cortex 13: 620–626.PubMedGoogle Scholar
  69. Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., et al., 2002, Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell 109: 873–885.PubMedGoogle Scholar
  70. Gill, S.R., Schroer, T.A., Szilak, I., Steuer, E.R., Sheetz, M.P., and Cleveland, D.W., 1991, Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein, J. Cell Biol. 115: 1639–1650.PubMedGoogle Scholar
  71. Gleeson, J.G., Allen, K.M., Fox, J.W., Lamperti, E.D., Berkovic, S., Scheffer, I., et al., 1998, Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein, Cell 92: 63–72.PubMedGoogle Scholar
  72. Gleeson, J.G., Lin, P.T., Flanagan, L.A., and Walsh, C.A., 1999, Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons, Neuron 23: 257–271.PubMedGoogle Scholar
  73. Gleeson, J.G., Luo, R.F., Grant, P.E., Guerrini, R., Huttenlocher, P.R., Berg, M.J., et al., 2000, Genetic and neuroradiological heterogeneity of double cortex syndrome, Ann. Neurol. 47: 265–269.PubMedGoogle Scholar
  74. Gonzalez-Billault, C., and Avila, J., 2000, Molecular genetic approaches to microtubule-associated protein function, Histol. Histopathol. 15: 1177–1183.PubMedGoogle Scholar
  75. Gonzalez-Billault, C., Avila, J., Caceres, A., 2001, Evidence for the role of MAPIB in axon formation. Mol. Biol. Cell 12: 2087–2098.PubMedGoogle Scholar
  76. Gonzalez-Billault, C., Demandt, E., Wandosell, F., Torres, M., Bonaldo, P., Stoykova, A., et al., 2000, Perinatal lethality of microtubule-associated protein 1B-deficient mice expressing alternative isoforms of the protein at low levels, Mol. Cell. Neurosci. 16: 408–421.PubMedGoogle Scholar
  77. Gonzalez-Billault, C., Owen, R., Gordon-Weeks, P.R., and Avila, J., 2002, Microtubule-associated protein 1B is involved in the initial stages of axonogenesis in peripheral nervous system cultured neurons, Brain Res. 943: 56–67.PubMedGoogle Scholar
  78. Gonzalez-Billault, C., Jimenez-Mateos, E.M., Caceres, A., Diaz-Nido, J., Wandosell, F., and Avila, J., 2004, Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system, J. Neurobiol. 58: 48–59.PubMedGoogle Scholar
  79. Goode, B.L., Denis, P.E., Panda, D., Radeke, M.J., Miller, H.P., Wilson, L., and Feinstein, S.C., 1997, Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly, Mol. Biol. Cell 8: 353–365.PubMedGoogle Scholar
  80. Goodson, H.V., Skube, S.B., Stalder, R., Valetti, C., Kreis, T.E., Morrison, E.E., et al., 2003, CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms, Cell Motil. Cytoskeleton 55: 156–173.PubMedGoogle Scholar
  81. Goold, R.G., Owen, R., and Gordon-Weeks, P.R., 1999, Glycogen synthase kinase 3β phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones, J. Cell Sci. 112: 3373–3384.PubMedGoogle Scholar
  82. Gordon-Weeks, P.R., 2004, Microtubules and growth cone function, J. Neurobiol. 58: 70–83.PubMedGoogle Scholar
  83. Gordon-Weeks, P.R., 2005, Neuronal Growth Cones, Cambridge University Press, Cambridge.Google Scholar
  84. Gordon-Weeks, P.R., and Fischer, I., 2000, MAP1B expression and microtubule stability in growing and regenerating axons, Microsc. Res. Tech. 48: 63–74.PubMedGoogle Scholar
  85. Gordon-Weeks, P.R., Mansfield, S.G., and Curran, I., 1989, Direct visualisation of the soluble pool of tubulin in the neuronal growth cone: Immunofluorescence studies following taxol polymerization, Brain Res. Dev. Brain Res. 49: 305–310.PubMedGoogle Scholar
  86. Graham, M.E., Ruma-Haynes, P., Capes-Davis, A.G., Dunn, J.M., Tan, T.C., Valova, V.A., et al., 2004, Multisite phosphorylation of doublecortin by cyclin-dependent kinase 5, Biochem. J. 381: 471–481.PubMedGoogle Scholar
  87. Gregory, S.L., and Brown, N.H., 1998, kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin, J. Cell Biol. 143: 1271–1282.PubMedGoogle Scholar
  88. Griparic, L., and Keller, T.C., 1998, Identification and expression of two novel CLIP-170/Restin isoforms expressed predominantly in muscle, Biochim. Biophys. Acta 1405: 35–46.PubMedGoogle Scholar
  89. Griparic, L., and Keller, T.C., III, 1999, Differential usage of two 5' splice sites in a complex exon generates additional protein sequence complexity in chicken CLIP-170 isoforms, Biochim. Biophys. Acta 1449: 119–124.PubMedGoogle Scholar
  90. Griparic, L., Volosky, J.M., and Keller, T.C., III, 1998, Cloning and expression of chicken CLIP-170 and restin isoforms, Gene 206: 195–208.PubMedGoogle Scholar
  91. Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertsen, H., et al., 1991, Identification and characterization of the familial adenomatous polyposis coli gene, Cell 66: 589–600.PubMedGoogle Scholar
  92. Guan, K.L., and Rao, Y., 2003, Signalling mechanisms mediating neuronal responses to guidance cues, Nat. Rev. Neurosci. 4: 941–956.PubMedGoogle Scholar
  93. Gustke, N., Trinczek, B., Biernat, J., Mandelkow, E.M., and Mandelkow, E., 1994, Domains of tau protein and interactions with microtubules, Biochemistry 33: 9511–9522.PubMedGoogle Scholar
  94. Hahn, C.M., Kleinholz, H., Koester, M.P., Grieser, S., Thelen, K., and Pollerberg, G.E., 2005, Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization, Neuroscience 134: 449–465.PubMedGoogle Scholar
  95. Hall, A.C., Lucas, F.R., and Salinas, P.C., 2000, Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling, Cell 100: 525–535.PubMedGoogle Scholar
  96. Hall, A.C., Brennan, A., Goold, R.G., Cleverley, K., Lucas, F.R., Gordon-Weeks, P.R. et al., 2002, Valproate regulates GSK-3-mediated axonal remodelling and synapsin I clustering in developing neurons, Mol. Cell. Neurosc. 20: 257–270.Google Scholar
  97. Hammarback, J.A., Obar, R.A., Hughes, S.M., and Vallee, R.B., 1991, MAP1B is encoded as a polyprotein that is processed to form a complex N-terminal microtubule-binding domain, Neuron 7: 129–139.PubMedGoogle Scholar
  98. Hanemaaijer, R., and Ginzburg, I., 1991, Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells, J. Neurosci. Res. 30: 163–171.PubMedGoogle Scholar
  99. Hanley, J.G., Koulen, P., Bedford, F., Gordon-Weeks, P.R., and Moss, S.J., 1999, The protein MAP-1B links GABA(C) receptors to the cytoskeleton at retinal synapses, Nature 397: 66–69.PubMedGoogle Scholar
  100. Harada, A., Oguchi, K., Okabe, S., Kuno, J., Terada, S., Ohshima, T., et al., 1994, Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature 369: 488–491.PubMedGoogle Scholar
  101. Harte, P.J., and Kankel, D.R., 1982, Genetic analysis of mutations at the Glued locus and interacting loci in Drosophila melanogaster, Genetics 101: 477–501.PubMedGoogle Scholar
  102. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H., and Inoue, K., 1994, Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase [corrected], Nature 370: 216–218.PubMedGoogle Scholar
  103. Hayashi, I., and Ikura, M., 2003, Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1), J. Biol. Chem. 278: 36430–36434.PubMedGoogle Scholar
  104. Hayashi, I., Wilde, A., Mal, T.K., and Ikura, M. 2005, Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex, Mol. Cell 19: 449–460.PubMedGoogle Scholar
  105. Hayden, J.H., Bowser, S.S., and Rieder, C.L., 1990, Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: Direct visualization in live newt lung cells, J. Cell Biol. 111: 1039–1045.PubMedGoogle Scholar
  106. He, Y., Francis, F., Myers, K.A., Yu, W., Black, M.M., and Baas, P.W., 2005, Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments, J. Cell Biol. 168: 697–703.PubMedGoogle Scholar
  107. Heidemann, S.R., Landers, J.M., and Hamborg, M.A., 1981, Polarity orientation of axonal microtubules, J. Cell Biol. 91: 61–665.Google Scholar
  108. Holzbaur, E.L., Hammarback, J.A., Paschal, B.M., Kravit, N.G., Pfister, K.K., and Vallee, R.B., 1991, Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued, Nature 351: 579–583.PubMedGoogle Scholar
  109. Honnappa, S., John, C.M., Kostrewa, D., Winkler, F.K., and Steinmetz, M.O., 2005, Structural insights into the EB1-APC interaction, EMBO J. 24: 261–269.PubMedGoogle Scholar
  110. Hoogenraad, C.C., Akhmanova, A., Grosveld, F., De Zeeuw, C.I., and Galjart, N., 2000, Functional analysis of CLIP-115 and its binding to microtubules, J. Cell Sci. 113: 2285–2297.PubMedGoogle Scholar
  111. Hoogenraad, C.C., Koekkoek, B., Akhmanova, A., Krugers, H., Dortland, B., Miedema, M., et al., 2002, Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice, Nat. Genet. 32: 116–127.PubMedGoogle Scholar
  112. Hoogenraad, C.C., Akhmanova, A., Galjart, N., and De Zeeuw, C.I., 2004, LIMK1 and CLIP-115: Linking cytoskeletal defects to Williams syndrome, Bioessays 26: 141–150.PubMedGoogle Scholar
  113. Horesh, D., Sapir, T., Francis, F., Wolf, S.G., Caspi, M., Elbaum, M., et al., 1999, Doublecortin, a stabilizer of microtubules, Hum. Mol. Genet. 8: 1599–1610.PubMedGoogle Scholar
  114. Horio, T., and Hotani, H., 1986, Visualization of the dynamic instability of individual microtubules by dark-field microscopy, Nature 321: 605–607.PubMedGoogle Scholar
  115. Howard, J., and Hyman, A.A., 2003, Dynamics and mechanics of the microtubule plus end, Nature 422: 753–758.PubMedGoogle Scholar
  116. Inoue, Y.H., do Carmo, A.M., Shiraki, M., Deak, P., Yamaguchi, M., Nishimoto, Y., et al., 2000, Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila melanogaster, J. Cell Biol. 149: 153–166.PubMedGoogle Scholar
  117. Jacobson, M., 1991, Developmental Neurobiology, Plenum, New York.Google Scholar
  118. Jimbo, T., Kawasaki, Y., Koyama, R., Sato, R., Takada, S., Haraguchi, K., et al., 2002, Identification of a link between the tumour suppressor APC and the kinesin superfamily, Nat. Cell Biol. 4: 323–327.PubMedGoogle Scholar
  119. Jimenez-Mateos, E.M., Wandosell, F., Reiner, O., Avila, J., and Gonzalez-Billault, C., 2005a, Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1, Biochem. J. 389: 333–341.PubMedGoogle Scholar
  120. Jimenez-Mateos, E.M., Paglini, G., Gonzalez-Billault, C., Caceres, A., and Avila, J., 2005b, End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis, J. Neurosci. Res. 80: 350–359.PubMedGoogle Scholar
  121. Juwana, J.P., Henderikx, P., Mischo, A., Wadle, A., Fadle, N., Gerlach, K., et al., 1999, EB/RP gene family encodes tubulin binding proteins, Int. J. Cancer 81: 275–284.PubMedGoogle Scholar
  122. Kalil, K., and Dent, E.W., 2005, Touch and go: Guidance cues signal to the growth cone cytoskeleton, Curr. Opin. Neurobiol. 15: 521–526.PubMedGoogle Scholar
  123. Kanai, Y., Takemura, R., Oshima, T., Mori, H., Ihara, Y., Yanagisawa, M., et al., 1989, Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA, J. Cell Biol. 109: 1173–1184.PubMedGoogle Scholar
  124. Kato, M., and Dobyns, W.B., 2003, Lissencephaly and the molecular basis of neuronal migration, Hum. Mol. Genet. 12: R89–R96.PubMedGoogle Scholar
  125. Kawakami, S., Muramoto, K., Ichikawa, M., and Kuroda, Y., 2003, Localization of microtubule-associated protein (MAP) 1B in the postsynaptic densities of the rat cerebral cortex, Cell Mol. Neurobiol. 23: 887–894.PubMedGoogle Scholar
  126. Keith, C.H., 1990, Neurite elongation is blocked if microtubule polymerization is inhibited in PC12 cells, Cell Motil. Cytoskeleton 17: 95–105.PubMedGoogle Scholar
  127. Kim, M.H., Cierpicki, T., Derewenda, U., Krowarsch, D., Feng, Y., Devedjiev, Y., et al., 2003, The DCX-domain tandems of doublecortin and doublecortin-like kinase, Nat. Struct. Mol. Biol. 10: 324–333.Google Scholar
  128. Kirschner, M.W., and Mitchison, T., 1986a, Beyond self-assembly: From microtubules to morphogenesis, Cell 45: 329–342.PubMedGoogle Scholar
  129. Kirschner, M.W., and Mitchison, T., 1986b, Microtubule dynamics, Nature 324: 621.PubMedGoogle Scholar
  130. Knops, J., Kosik, K.S., Lee, G., Pardee, J.D., Cohen, G.L., and McConlogue, L., 1991, Overexpression of tau in a non-neuronal cell induces long cellular processes, J. Cell Biol. 114: 725–732.PubMedGoogle Scholar
  131. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., and Fuchs, E., 2003, ACF7: An essential integrator of microtubule dynamics, Cell 115: 343–354.PubMedGoogle Scholar
  132. Komarova, Y.A., Akhmanova, A.S., Kojima, S., Galjart, N., and Borisy, G.G., 2002, Cytoplasmic linker proteins promote microtubule rescue in vivo, J. Cell Biol. 159: 589–599.PubMedGoogle Scholar
  133. Komarova, Y., Lansbergen, G., Galjart, N., Grosveld, F., Borisy, G.G., and Akhmanova, A., 2005, EB1 and EB3 Control CLIP Dissociation from the Ends of Growing Microtubules, Mol. Biol. Cell 16: 5334–5345.PubMedGoogle Scholar
  134. Kosik, K.S., and Finch, E.A., 1987, MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: An immunocytochemical study of cultured rat cerebrum, J. Neurosci. 7: 3142–3153.PubMedGoogle Scholar
  135. LaMonte, B.H., Wallace, K.E., Holloway, B.A., Shelly, S.S., Ascano, J., Tokito, M., et al., 2002, Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration, Neuron 34: 715–727.PubMedGoogle Scholar
  136. Langkopf, A., Hammarback, J.A., Muller, R., Vallee, R.B., and Garner, C.C., 1992, Microtubule-associated proteins 1A and LC2. Two proteins encoded in one messenger RNA, J. Biol. Chem. 267: 16561–16566.PubMedGoogle Scholar
  137. Lansbergen, G., Komarova, Y., Modesti, M., Wyman, C., Hoogenraad, C.C., Goodson, H.V., et al., 2004, Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization, J. Cell Biol. 166: 1003–1014.PubMedGoogle Scholar
  138. LeClerc, N., Baas, P.W., Garner, C.C., and Kosik, K.S., 1996, Juvenile and mature MAP2 isoforms induce distinct patterns of process outgrowth, Mol. Biol. Cell 7: 443–455.PubMedGoogle Scholar
  139. Lee, G., and Brandt, R., 1992, Microtubule-bundling studies revisited: Is there a role for MAPs? Trends Cell Biol. 2: 286–289.PubMedGoogle Scholar
  140. Lee, G., and Rook, S.L., 1992, Expression of tau protein in non-neuronal cells: Microtubule binding and stabilization, J. Cell Sci. 102: 227–237.PubMedGoogle Scholar
  141. Lee, H., Engel, U., Rusch, J., Scherrer, S., Sheard, K., and Van Vactor, D., 2004, The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance, Neuron 42: 913–926.PubMedGoogle Scholar
  142. Lein, P., Johnson, M., Guo, X., Rueger, D., and Higgins, D., 1995, Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons, Neuron 15: 597–605.PubMedGoogle Scholar
  143. Lein, P., Guo, X., Hedges, A.M., Rueger, D., Johnson, M., and Higgins, D., 1996, The effects of extracellular matrix and osteogenic protein-1 on the morphological differentiation of rat sympathetic neurons, Int. J. Dev. Neurosci. 14: 203–215.PubMedGoogle Scholar
  144. Lemos, C.L., Sampaio, P., Maiato, H., Costa, M., Omel'yanchuk, L.V., Liberal, V., and Sunkel, C.E., 2000, Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization, EMBO J. 19: 3668–3682.PubMedGoogle Scholar
  145. Li, S., Finley, J., Liu, Z.J., Qiu, S.H., Chen, H., Luan, C.H., et al., 2002, Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain, J. Biol. Chem. 277: 48596–48601.PubMedGoogle Scholar
  146. Ligon, L.A., Shelly, S.S., Tokito, M., and Holzbaur, E.L., 2003, The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization, Mol. Biol. Cell 14: 1405–1417.PubMedGoogle Scholar
  147. Liu, C.W., Lee, G., and Jay, D.G., 1999, Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons, Cell Motil. Cytoskeleton 43: 232–242.PubMedGoogle Scholar
  148. Liu, J.J., Ding, J., Kowal, A.S., Nardine, T., Allen, E., Delcroix, J.D., et al., 2003, BPAG1n4 is essential for retrograde axonal transport in sensory neurons, J. Cell Biol. 163: 223–229.PubMedGoogle Scholar
  149. Lucas, F.R., and Salinas, P.C., 1997, WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons, Dev. Biol. 192: 31–44.PubMedGoogle Scholar
  150. Lucas, F.R., Goold, R.G., Gordon-Weeks, P.R., and Salinas, P.C., 1998, Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium, J. Cell Sci. 111: 1351–1361.PubMedGoogle Scholar
  151. Ma, Y., Shakiryanova, D., Vardya, I., and Popov, S.V., 2004, Quantitative analysis of microtubule transport in growing nerve processes, Curr. Biol. 14: 725–730.PubMedGoogle Scholar
  152. Mack, T.G., Koester, M.P., and Pollerberg, G.E., 2000, The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones, Mol. Cell. Neurosci. 15: 51–65.PubMedGoogle Scholar
  153. Mandell, J.W., and Banker, G.A., 1996, A spatial gradient of tau protein phosphorylation in nascent axons, J. Neurosci. 16: 5727–5740.PubMedGoogle Scholar
  154. Mann, S.S., and Hammarback, J.A., 1994, Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B, J. Biol. Chem. 269: 11492–11497.PubMedGoogle Scholar
  155. Meixner, A., Haverkamp, S., Wassle, H., Fuhrer, S., Thalhammer, J., Kropf, N., et al., 2000, MAP1B is required for axon guidance and is involved in the development of the central and peripheral nervous system, J. Cell Biol. 151: 1169–1178.PubMedGoogle Scholar
  156. Mimori-Kiyosue, Y., Shiina, N., and Tsukita, S., 2000a, Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells, J. Cell Biol. 148: 505–518.PubMedGoogle Scholar
  157. Mimori-Kiyosue, Y., Shiina, N., and Tsukita, S., 2000b, The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules, Curr. Biol. 10: 865–868.PubMedGoogle Scholar
  158. Mimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G., Sasaki, H., Matsui, C., Severin, F., et al., 2005, CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex, J. Cell Biol. 168: 141–153.PubMedGoogle Scholar
  159. Mitchison, T., and Kirschner, M.W., 1984a, Microtubule assembly nucleated by isolated centromeres, Nature 312: 232–237.PubMedGoogle Scholar
  160. Mitchison, T., and Kirschner, M.W., 1984b, Dynamic instability of microtubule growth, Nature 312: 237–242.PubMedGoogle Scholar
  161. Moores, C.A., Perderiset, M., Francis, F., Chelly, J., Houdusse, A., and Milligan, R.A., 2004, Mechanism of microtubule stabilization by doublecortin, Mol. Cell 14: 833–839.PubMedGoogle Scholar
  162. Morrison, E.E., Wardleworth, B.N., Askham, J.M., Markham, A.F., and Meredith, D.M., 1998, EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle, Oncogene 17: 3471–3477.PubMedGoogle Scholar
  163. Morrison, E.E., Moncur, P.M., and Askham, J.M., 2002, EB1 identifies sites of microtubule polymerisation during neurite development, Brain Res. Mol. Brain Res. 98: 145–152.PubMedGoogle Scholar
  164. Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A.D., Kurt, A., et al., 2004, Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS, Neurology 63: 724–726.PubMedGoogle Scholar
  165. Munch, C., Rosenbohm, A., Sperfeld, A.D., Uttner, I., Reske, S., Krause, B.J., et al., 2005, Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD, Ann. Neurol. 58: 777–780.PubMedGoogle Scholar
  166. Munemitsu, S., Souza, B., Muller, O., Albert, I., Rubinfeld, B., and Polakis, P., 1994, The APC gene product associates with microtubules in vivo and promotes their assembly in vitro, Cancer Res. 54: 3676–3681.PubMedGoogle Scholar
  167. Nakagawa, H., Koyama, K., Murata, Y., Morito, M., Akiyama, T., and Nakamura, Y., 2000, EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue, Oncogene 19: 210–216.PubMedGoogle Scholar
  168. Nakamura, M., Zhou, X.Z., and Lu, K.P., 2001, Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization, Curr. Biol. 11: 1062–1067.PubMedGoogle Scholar
  169. Nathke, I.S., 2004, The adenomatous polyposis coli protein: The Achilles heel of the gut epithelium, Annu. Rev. Cell Dev. Biol. 20: 337–366.PubMedGoogle Scholar
  170. Noble, M., Lewis, S.A., and Cowan, J., 1989, The microtubule binding domain of the microtubule-associated protein MAP-1B contains a repeated sequence motif unrelated to that of MAP-2 and tau, J. Cell Biol. 109: 3367–3376.PubMedGoogle Scholar
  171. Noiges, R., Eichinger, R., Kutschera, W., Fischer, I., Nemeth, Z., Wiche, G., et al., 2002, Microtubule-associated protein 1A (MAP1A) and MAP1B: Light chains determine distinct functional properties, J. Neurosci. 22: 2106–2114.PubMedGoogle Scholar
  172. Owen, R., and Gordon-Weeks, P.R., 2003, Inhibition of glycogen synthase kinase 3β in sensory neurons in culture alters actin filament and microtubule dynamics in growth cones, Mol. Cell. Neurosci. 23: 626–637.PubMedGoogle Scholar
  173. Perez, F., Diamantopoulos, G.S., Stalder, R., and Kreis, T.E., 1999, CLIP-170 highlights growing microtubule ends in vivo, Cell 96: 517–527.PubMedGoogle Scholar
  174. Pierre, P., Scheel, J., Rickard, J.E., and Kreis, T.E., 1992, CLIP-170 links endocytic vesicles to microtubules, Cell 70: 887–900.PubMedGoogle Scholar
  175. Pierre, P., Pepperkok, R., and Kreis, T.E., 1994, Molecular characterization of two functional domains of CLIP-170 in vivo, J. Cell Sci. 107: 1909–1920.PubMedGoogle Scholar
  176. Powell, S.K., Rivas, R.J., Rodriguez-Boulan, E., and Hatten, M.E., 1997, Development of polarity in cerebellar granule neurons, J. Neurobiol. 32: 223–236.PubMedGoogle Scholar
  177. Preuss, U., Biernat, J., Mandelkow, E.M., and Mandelkow, E., 1997, The ‘jaws’ model of tau-microtubule interaction examined in CHO cells, J. Cell Sci. 110: 789–800.PubMedGoogle Scholar
  178. Prokop, A., Uhler, J., Roote, J., and Bate, M., 1998, The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons, J. Cell Biol. 143: 1283–1294.PubMedGoogle Scholar
  179. Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W.B., et al., 1993, Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats, Nature 364: 717–721.PubMedGoogle Scholar
  180. Renner, C., Pfitzenmeier, J.P., Gerlach, K., Held, G., Ohnesorge, S., Sahin, U., et al., 1997, RP1, a new member of the adenomatous polyposis coli-binding EB1-like gene family, is differentially expressed in activated T cells, J. Immunol. 159: 1276–1283.PubMedGoogle Scholar
  181. Rickard, J.E., and Kreis, T.E., 1990, Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells, J. Cell Biol. 110: 1623–1633.PubMedGoogle Scholar
  182. Roberts, A., 1988, The early development of neurons in Xenopus embryos revelaed by transmitter immunocytochemistry for serotonin, GABA and glycine, in: Developmental Neurobiology of the Frog, E.D. Pollack, and H.D. Bibb, eds., Alan R. Liss, New York, pp. 191–205.Google Scholar
  183. Roper, K., Gregory, S.L., and Brown, N.H., 2002, The ‘spectraplakins’: Cytoskeletal giants with characteristics of both spectrin and plakin families, J. Cell Sci. 115: 4215–4225.PubMedGoogle Scholar
  184. Sammak, P.J., and Borisy, G.G., 1988, Direct observation of microtubule dynamics in living cells, Nature 332: 724–726.PubMedGoogle Scholar
  185. Sapir, T., Elbaum, M., and Reiner, O., 1997, Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit, EMBO J. 16: 6977–6984.PubMedGoogle Scholar
  186. Sapir, T., Cahana, A., Seger, R., Nekhai, S., and Reiner, O., 1999, LIS1 is a microtubule-associated phosphoprotein, Eur. J. Biochem. 265: 181–188.PubMedGoogle Scholar
  187. Schaar, B.T., Kinoshita, K., and McConnell, S.K., 2004, Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons, Neuron 41: 203–213.PubMedGoogle Scholar
  188. Schafer, D.A., Gill, S.R., Cooper, J.A., Heuser, J.E., and Schroer, T.A., 1994, Ultrastructural analysis of the dynactin complex: An actin-related protein is a component of a filament that resembles F-actin, J. Cell Biol. 126: 403–412.PubMedGoogle Scholar
  189. Schaefer, A.W., Kabir, N., and Forscher, P., 2002, Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones, J. Cell Biol. 158: 139–152.PubMedGoogle Scholar
  190. Scheel, J., Pierre, P., Rickard, J.E., Diamantopoulos, G.S., Valetti, C., van der Goot, F.G., et al., 1999, Purification and analysis of authentic CLIP-170 and recombinant fragments, J. Biol. Chem. 274: 25883–25891.PubMedGoogle Scholar
  191. Shea, T.B., Beermann, M.L., Nixon, R.A., and Fischer, I. 1992, Microtubule-associated protein tau is required for axonal neurite elaboration by neuroblastoma cells, J. Neurosci. Res. 32: 363–374.PubMedGoogle Scholar
  192. Shi, S.H., Cheng, T., Jan, L.Y., and Jan, Y.N., 2004, APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity, Curr. Biol. 14: 2025–2032.PubMedGoogle Scholar
  193. Shimomura, A., Kohu, K., Akiyama, T., and Senda, T., 2005, Subcellular localization of the tumor suppressor protein APC in developing cultured neurons, Neurosci. Lett. 375: 81–86.PubMedGoogle Scholar
  194. Slep, K.C., Rogers, S.L., Elliott, S.L., Ohkura, H., Kolodziej, P.A., and Vale, R.D., 2005, Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end, J. Cell Biol. 168: 587–598.PubMedGoogle Scholar
  195. Smith, D.S., Niethammer, M., Ayala, R., Zhou, Y., Gambello, M.J., Wynshaw-Boris, A., and Tsai, L.H., 2000, Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1, Nat. Cell Biol. 2: 767–775.PubMedGoogle Scholar
  196. Stepanova, T., Slemmer, J., Hoogenraad, C.C., Lansbergen, G., Dortland, B., De Zeeuw, C.I., et al., 2003, Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein), J. Neurosci. 23: 2655–2664.PubMedGoogle Scholar
  197. Su, L.K., and Qi, Y., 2001, Characterization of human MAPRE genes and their proteins, Genomics 71: 142–149.PubMedGoogle Scholar
  198. Su, L.K., Burrell, M., Hill, D.E., Gyuris, J., Brent, R., Wiltshire, R. et al., 1995, APC binds to the novel protein EB1, Cancer Res. 55: 2972–2977.PubMedGoogle Scholar
  199. Subramanian, A., Prokop, A., Yamamoto, M., Sugimura, K., Uemura, T., Betschinger, J., et al., 2003, Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction, Curr. Biol. 13: 1086–1095.PubMedGoogle Scholar
  200. Takahashi, M., Yasutake, K., and Tomizawa, K., 1999, Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3β-dependent phosphorylation of juvenile tau in cultured hippocampal neurons, J. Neurochem. 73: 2073–2083.PubMedGoogle Scholar
  201. Takei, Y., Kondo, S., Harada, A., Inomata, S., Noda, T., and Hirokawa, N., 1997, Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene, J. Cell Biol. 137: 1615–1626.PubMedGoogle Scholar
  202. Takei, Y., Teng, J., Harada, A., and Hirokawa, N., 2000, Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, J. Cell Biol. 150: 989–1000.PubMedGoogle Scholar
  203. Takemura, R., Okabe, S., Umeyama, T., Kanai, Y., Cowan, N.J., and Hirokawa, N., 1992, Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau, J. Cell Sci. 103: 953–964.PubMedGoogle Scholar
  204. Tanaka, E., and Kirschner, M.W., 1995, The role of microtubules in growth cone turning at substrate boundaries, J. Cell Biol. 128: 127–137.PubMedGoogle Scholar
  205. Tanaka, E., Ho, T., and Kirschner, M.W., 1995, The role of microtubule dynamics in growth cone motility and axonal growth, J. Cell Biol. 128: 139–155.PubMedGoogle Scholar
  206. Tanaka, T., Serneo, F.F., Tseng, H.C., Kulkarni, A.B., Tsai, L.H., and Gleeson, J.G., 2004, Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration, Neuron 41: 215–227.PubMedGoogle Scholar
  207. Teichman-Weinberg, A., Littauer, U.Z., and Ginzburg, I., 1988, The inhibition of neurite outgrowth in PC12 cells by tubulin antisense oligodeoxyribonucleotides, Gene 72: 297–307.PubMedGoogle Scholar
  208. Teng, J., Takei, Y., Harada, A., Nakata, T., Chen, J., and Hirokawa, N., 2001, Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization, J. Cell Biol. 155: 65–76.PubMedGoogle Scholar
  209. Tint, I., Slaughter, T., Fischer, I., and Black, M.M., 1998, Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons, J. Neurosci. 18: 8660–8673.PubMedGoogle Scholar
  210. Tirnauer, J.S. and Bierer, B.E., 2000, EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability, J. Cell Biol. 149: 761–766.PubMedGoogle Scholar
  211. Tirnauer, J.S., Grego, S., Salmon, E.D., and Mitchison, T.J., 2002, EB1-microtubule interactions in Xenopus egg extracts: Role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules, Mol. Biol. Cell 13: 3614–3626.PubMedGoogle Scholar
  212. Togel, M., Wiche, G., and Propst, F., 1998, Novel features of the light chain of microtubule-associated protein MAP1B: Microtubule stabilization, self interaction, actin filament binding, and regulation by the heavy chain, J. Cell Biol. 143: 695–707.PubMedGoogle Scholar
  213. Trivedi, N., Marsh, P., Goold, R.G., Wood-Kaczmar, A., and Gordon-Weeks, P.R., 2005, Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons, J. Cell Sci. 118: 993–1005.PubMedGoogle Scholar
  214. Vale, R.D., 2003, The molecular motor toolbox for intracellular transport, Cell 112: 467–480.PubMedGoogle Scholar
  215. Vandecandelaere, A., Pedrotti, B., Utton, M.A., Calvert, R.A., and Bayley, P.M., 1996, Differences in the regulation of microtubule dynamics by microtubule-associated proteins MAP1B and MAP2, Cell Motil. Cytoskeleton 35: 134–146.PubMedGoogle Scholar
  216. Vaughan, K.T., Tynan, S.H., Faulkner, N.E., Echeverri, C.J., and Vallee, R.B., 1999, Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends, J. Cell Sci. 112: 1437–1447.PubMedGoogle Scholar
  217. Vaughan, P.S., Miura, P., Henderson, M., Byrne, B., and Vaughan, K.T., 2002, A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport, J. Cell Biol. 158: 305–319.PubMedGoogle Scholar
  218. Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., Takefuji, M., et al., 2004, Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration, Dev. Cell 7: 871–883.PubMedGoogle Scholar
  219. Wen, Y., Eng, C.H., Schmoranzer, J., Cabrera-Poch, N., Morris, E.J., Chen, M., et al., 2004, EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nat. Cell Biol. 6: 820–830.PubMedGoogle Scholar
  220. Wiggin, G.R., Fawcett, J.P., and Pawson, T., 2005, Polarity proteins in axon specification and synaptogenesis, Dev. Cell 8: 803–816.PubMedGoogle Scholar
  221. Williamson, T.W., Gordon-Weeks, P.R., Schachner, M., and Taylor, J., 1996, Microtubule reorganization is obligatory for growth cone turning, Proc. Natl. Acad. Sci. USA 93: 15221–15226.PubMedGoogle Scholar
  222. Wu, X.S., Tsan, G.L., and Hammer, J.A., III, 2005, Melanophilin and myosin Va track the microtubule plus end on EB1, J. Cell Biol. 171: 201–207.PubMedGoogle Scholar
  223. Zauner, W., Kratz, J., Staunton, J., Feick, P., and Wiche, G., 1992, Identification of two distinct microtubule binding domains on recombinant rat MAP 1B, Eur. J. Cell Biol. 57: 66–74.PubMedGoogle Scholar
  224. Zhou, F.Q., Waterman-Storer, C.M., and Cohan, C.S., 2002, Focal loss of actin bundles causes microtubule redistribution and growth cone turning, J. Cell Biol. 157: 839–849.PubMedGoogle Scholar
  225. Zhou, F.Q., Zhou, J., Dedhar, S., Wu, Y.H., and Snider, W.D., 2004, NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC, Neuron 42: 897–912.PubMedGoogle Scholar
  226. Zumbrunn, J., Kinoshita, K., Hyman, A.A., and Nathke, I.S., 2001, Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation, Curr. Biol. 11: 44–49.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • John K. Chilton
    • 1
  • Phillip R. Gordon-Weeks
    • 2
  1. 1.Institute of Biomedical and Clinical Sciences, Peninsula Medical SchoolTamar Science ParkPlymouthUK
  2. 2.MRC Centre for Developmental NeurobiologyKing's College LondonLondonUk

Personalised recommendations