Wnt Signaling in Neurite Development

  • Silvana B. Rosso
  • Patricia C. Salinas


Growth Cone Axon Guidance Commissural Axon Neuronal Polarity Vertebrate Nervous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arimura, N., Menager, C., Fukata, Y., and Kaibuchi, K., 2004, Role of CRMP-2 in neuronal polarity, J. Neurobiol. 58: 34–47.PubMedCrossRefGoogle Scholar
  2. Baas, P.W., and Qiang, L., 2005, Neuronal microtubules: When the MAP is the roadblock, Trends Cell Biol. 15: 183–187.PubMedCrossRefGoogle Scholar
  3. Berling, B., Wille, H., Roll, B., Mandelkow, E.M., Garner, C., and Mandelkow, E., 1994, Phosphorylation of microtubule-associated proteins MAP2a, b and MAP2c at Ser136 by proline-directed kinases in vivo and in vitro, Eur. J. Cell Biol. 64: 120–130.PubMedGoogle Scholar
  4. Boutros, M., Paricio, N., Strutt, D.I., and Mlodzik, M., 1998, Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling, Cell 94: 109–118.PubMedCrossRefGoogle Scholar
  5. Boutros, M., Mihaly, J., Bouwmeester, T., and Mlodzik, M., 2000, Signaling specificity by Frizzled receptors in Drosophila, Science 288: 1825–1828.PubMedCrossRefGoogle Scholar
  6. Bovolenta, P., 2005, Morphogen signaling at the vertebrate growth cone: A few cases or a general strategy? J. Neurobiol. 64: 405–416.PubMedCrossRefGoogle Scholar
  7. Bradke, F., and Dotti, C.G., 1999, The role of local actin instability in axon formation, Science 283: 1931–1934.PubMedCrossRefGoogle Scholar
  8. Bradke, F., and Dotti, C.G., 2000, Establishment of neuronal polarity: Lessons from cultured hippocampal neurons, Curr. Opin. Neurobiol. 10: 574–581.PubMedCrossRefGoogle Scholar
  9. Cadigan, K.M., and Nusse, R., 1997, Wnt signaling: A common theme in animal development, Genes Dev. 11: 3286–3305.PubMedCrossRefGoogle Scholar
  10. Ciani, L., and Salinas, P.C., 2005, WNTs in the vertebrate nervous system: From patterning to neuronal connectivity, Nat. Rev. Neurosci. 6: 351–362.PubMedCrossRefGoogle Scholar
  11. Ciani, L., Krylova, O., Smalley, M.J., Dale, T.C., and Salinas, P.C., 2004, A divergent canonical WNT-signaling pathway regulates microtubule dynamics: Dishevelled signals locally to stabilize microtubules, J. Cell Biol. 164: 243–253.PubMedCrossRefGoogle Scholar
  12. Cline, H.T., 2001, Dendritic arbor development and synaptogenesis, Curr. Opin. Neurobiol. 11: 118–126.PubMedCrossRefGoogle Scholar
  13. Dickson, B.J., 2002, Molecular mechanisms of axon guidance, Science 298: 1959–1964.PubMedCrossRefGoogle Scholar
  14. Doble, B.W., and Woodgett, J.R., 2003, GSK-3: Tricks of the trade for a multi-tasking kinase, J. Cell Sci. 116: 1175–1186.PubMedCrossRefGoogle Scholar
  15. Dotti, C.G., Sullivan, C.A., and Banker, G.A., 1988, The establishment of polarity by hippocampal neurons in culture, J. Neurosci. 8: 1454–1468.PubMedGoogle Scholar
  16. Fukata, Y., Itoh, T.J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., et al., 2002, CRMP-2 binds to tubulin heterodimers to promote microtubule assembly, Nat. Cell Biol. 4: 583–591.PubMedGoogle Scholar
  17. Glinka, A., Wu, W., Delius, H., Monaghan, A.P., Blumenstock, C., and Niehrs, C., 1998, Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction, Nature 391: 357–362.PubMedCrossRefGoogle Scholar
  18. Gonzalez-Billault, C., Jimenez-Mateos, E.M., Caceres, A., Diaz-Nido, J., Wandosell, F., and Avila, J., 2004, Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system, J. Neurobiol. 58: 48–59.PubMedCrossRefGoogle Scholar
  19. Gregorieff, A., and Clevers, H., 2005, Wnt signaling in the intestinal epithelium: From endoderm to cancer, Genes Dev. 19: 877–890.PubMedCrossRefGoogle Scholar
  20. Habas, R., Dawid, I.B., and He, X., 2003, Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation, Genes Dev. 17: 295–309.PubMedCrossRefGoogle Scholar
  21. Hall, A.C., Lucas, F.R., and Salinas, P.C., 2000, Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling, Cell 100: 525–535.PubMedCrossRefGoogle Scholar
  22. Hamori, J., and Somogyi, J., 1983, Differentiation of cerebellar mossy fiber synapses in the rat: A quantitative electron microscope study, J. Comp. Neurol. 220: 365–377.PubMedCrossRefGoogle Scholar
  23. Hanger, D.P., Hughes, K., Woodgett, J.R., Brion, J.P., and Anderton, B.H., 1992, Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase, Neurosci. Lett. 147: 58–62.PubMedCrossRefGoogle Scholar
  24. Heisenberg, C.P., Tada, M., Rauch, G.J., Saude, L., Concha, M.L., Geisler, R., et al., 2000, Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation, Nature 405: 76–81.PubMedCrossRefGoogle Scholar
  25. Holmen, S.L., Salic, A., Zylstra, C.R., Kirschner, M.W., and Williams, B.O., 2002, A novel set of Wnt-Frizzled fusion proteins identifies receptor components that activate beta -catenin-dependent signaling, J. Biol. Chem. 277: 34727–34735.PubMedCrossRefGoogle Scholar
  26. Inagaki, N., Chihara, K., Arimura, N., Menager, C., Kawano, Y., Matsuo, N., et al., 2001, CRMP-2 induces axons in cultured hippocampal neurons, Nat. Neurosci. 4: 781–782.PubMedCrossRefGoogle Scholar
  27. Inoue, T., Oz, H.S., Wiland, D., Gharib, S., Deshpande, R., Hill, R.J., et al., 2004, C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling, Cell 118: 795–806.PubMedCrossRefGoogle Scholar
  28. Jan, Y.N., and Jan, L.Y., 2003, The control of dendrite development, Neuron 40: 229–242.PubMedCrossRefGoogle Scholar
  29. Jiang, H., Guo, W., Liang, X., and Rao, Y., 2005, Both the establishment and the maintenance of neuronal polarity require active mechanisms: Critical roles of GSK-3beta and its upstream regulators, Cell 120: 123–135.PubMedGoogle Scholar
  30. Katanaev, V.L., Ponzielli, R., Semeriva, M., and Tomlinson, A., 2005, Trimeric G protein-dependent frizzled signaling in Drosophila, Cell 120: 111–122.PubMedCrossRefGoogle Scholar
  31. Krylova, O., Messenger, M.J., and Salinas, P.C., 2000, Dishevelled-1 regulates microtubule stability: A new function mediated by glycogen synthase kinase-3beta, J. Cell Biol. 151: 83–94.PubMedCrossRefGoogle Scholar
  32. Krylova, O., Herreros, J., Cleverley, K.E., Ehler, E., Henriquez, J.P., Hughes, S.M., et al., 2002, WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons, Neuron 35: 1043–1056.PubMedCrossRefGoogle Scholar
  33. Kuhl, M., Sheldahl, L.C., Malbon, C.C., and Moon, R.T., 2000, Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus, J. Biol. Chem. 275: 12701–12711.PubMedCrossRefGoogle Scholar
  34. Liu, T., DeCostanzo, A.J., Liu, X., Wang, H., Hallagan, S., Moon, R.T., et al., 2001, G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway, Science 292: 1718–1722.PubMedCrossRefGoogle Scholar
  35. Liu, Y., Shi, J., Lu, C.C., Wang, Z.B., Lyuksyutova, A.I., Song, X., et al., 2005, Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract, Nat. Neurosci. 8: 1151–1159.PubMedCrossRefGoogle Scholar
  36. Logan, C.Y., and Nusse, R., 2004, The Wnt signaling pathway in development and disease, Annu. Rev. Cell Dev. Biol. 20: 781–810.PubMedCrossRefGoogle Scholar
  37. Lu, W., Yamamoto, V., Ortega, B., and Baltimore, D., 2004, Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth, Cell 119: 97–108.PubMedCrossRefGoogle Scholar
  38. Lucas, F.R., and Salinas, P.C., 1997, WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons, Dev. Biol. 192: 31–44.PubMedCrossRefGoogle Scholar
  39. Lucas, F.R., Goold, R.G., Gordon-Weeks, P.R., and Salinas, P.C., 1998, Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium, J. Cell Sci. 111: 1351–1361.PubMedGoogle Scholar
  40. Luo, L., 2000, Rho GTPases in neuronal morphogenesis, Nat. Rev. Neurosci. 1: 173–180.PubMedCrossRefGoogle Scholar
  41. Luu, H.H., Zhang, R., Haydon, R.C., Rayburn, E., Kang, Q., Si, W., et al., 2004, Wnt/beta-catenin signaling pathway as a novel cancer drug target, Curr. Cancer Drug Targets 4: 653–671.PubMedCrossRefGoogle Scholar
  42. Lyuksyutova, A.I., Lu, C.C., Milanesio, N., King, L.A., Guo, N., Wang, Y., et al., 2003, Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling, Science 302: 1984–1988.PubMedCrossRefGoogle Scholar
  43. McAllister, A.K., 2000, Cellular and molecular mechanisms of dendrite growth, Cereb. Cortex 10: 963–973.PubMedCrossRefGoogle Scholar
  44. Medina, A., and Steinbeisser, H., 2000, Interaction of Frizzled 7 and Dishevelled in Xenopus, Dev. Dyn. 218: 671–680.PubMedCrossRefGoogle Scholar
  45. Moon, R.T., Bowerman, B., Boutros, M., and Perrimon, N., 2002, The promise and perils of Wnt signaling through beta-catenin, Science 296: 1644–1646.PubMedCrossRefGoogle Scholar
  46. Packard, M., Koo, E.S., Gorczyca, M., Sharpe, J., Cumberledge, S., and Budnik, V., 2002, The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation, Cell 111: 319–330.PubMedCrossRefGoogle Scholar
  47. Peifer, M., and Polakis, P., 2000, Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus, Science 287: 1606–1609.PubMedCrossRefGoogle Scholar
  48. Polleux, F., Morrow, T., and Ghosh, A., 2000, Semaphorin 3A is a chemoattractant for cortical apical dendrites, Nature 404: 567–573.PubMedCrossRefGoogle Scholar
  49. Rodriguez-Boulan, E., and Powell, S.K., 1992, Polarity of epithelial and neuronal cells, Annu. Rev. Cell Biol. 8: 395–427.PubMedCrossRefGoogle Scholar
  50. Rosso, S.B., Sussman, D., Wynshaw-Boris, A., and Salinas, P.C., 2005, Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development, Nat. Neurosci. 8: 34–42.PubMedCrossRefGoogle Scholar
  51. Salinas, P.C., 2005, Signaling at the vertebrate synapse: New roles for embryonic morphogens? J. Neurobiol. 64: 435–445.PubMedCrossRefGoogle Scholar
  52. Schmitt, A.M., Shi, J., Wolf, A.M., Lu, C.C., King, L.A., and Zou, Y., 2005, Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping, Nature 439: 31–37.Google Scholar
  53. Scott, E.K., and Luo, L., 2001, How do dendrites take their shape? Nat. Neurosci. 4: 359–365.PubMedCrossRefGoogle Scholar
  54. Sheldahl, L.C., Slusarski, D.C., Pandur, P., Miller, J.R., Kuhl, M., and Moon, R.T., 2003, Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos, J. Cell Biol. 161: 769–777.PubMedCrossRefGoogle Scholar
  55. Slusarski, D.C., Corces, V.G., and Moon, R.T., 1997, Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signaling, Nature 390: 410–413.PubMedCrossRefGoogle Scholar
  56. Strutt, D., 2003, Frizzled signalling and cell polarisation in Drosophila and vertebrates, Development 130: 4501–4513.PubMedCrossRefGoogle Scholar
  57. Strutt, D.I., Weber, U., and Mlodzik, M., 1997, The role of RhoA in tissue polarity and Frizzled signaling, Nature 387: 292–295.PubMedCrossRefGoogle Scholar
  58. Sutherland, C., Leighton, I.A., and Cohen, P., 1993, Inactivation of glycogen synthase kinase-3 beta by phosphorylation: New kinase connections in insulin and growth-factor signaling, Biochem. J. 296: 15–19.PubMedGoogle Scholar
  59. Torroja, C., Gorfinkiel, N., and Guerrero, I., 2005, Mechanisms of Hedgehog gradient formation and interpretation, J. Neurobiol. 64: 334–356.PubMedCrossRefGoogle Scholar
  60. Van Aelst, L., and Cline, H.T., 2004, Rho GTPases and activity-dependent dendrite development, Curr. Opin. Neurobiol. 14: 297–304.PubMedCrossRefGoogle Scholar
  61. Veeman, M.T., Axelrod, J.D., and Moon, R.T., 2003, A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling, Dev. Cell 5: 367–377.PubMedCrossRefGoogle Scholar
  62. Waites, C.L., Craig, A.M., and Garner, C.C., 2005, Mechanisms of vertebrate synaptogenesis, Annu. Rev. Neurosci. 28: 251–274.PubMedCrossRefGoogle Scholar
  63. Whitford, K.L., Marillat, V., Stein, E., Goodman, C.S., Tessier-Lavigne, M., Chedotal, A., et al., 2002, Regulation of cortical dendrite development by Slit-Robo interactions, Neuron 33: 47–61.PubMedCrossRefGoogle Scholar
  64. Wiggin, G.R., Fawcett, J.P., and Pawson, T., 2005, Polarity proteins in axon specification and synaptogenesis, Dev. Cell 8: 803–816.PubMedCrossRefGoogle Scholar
  65. Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., et al., 2003, Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature 423: 448–452.PubMedCrossRefGoogle Scholar
  66. Wong, R.O., and Ghosh, A., 2002, Activity-dependent regulation of dendritic growth and patterning, Nat. Rev. Neurosci. 3: 803–812.PubMedCrossRefGoogle Scholar
  67. Wong, H.C., Bourdelas, A., Krauss, A., Lee, H.J., Shao, Y., Wu, D., et al., 2003, Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled, Mol. Cell 12: 1251–1260.PubMedCrossRefGoogle Scholar
  68. Yoshikawa, S., McKinnon, R.D., Kokel, M., and Thomas, J.B., 2003, Wnt-mediated axon guidance via the Drosophila Derailed receptor, Nature 422: 583–588.PubMedCrossRefGoogle Scholar
  69. Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., and Kaibuchi, K., 2005, GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity, Cell 120: 137–149.PubMedCrossRefGoogle Scholar
  70. Yu, X., and Malenka, R.C., 2003, Beta-catenin is critical for dendritic morphogenesis, Nat. Neurosci. 6: 1169–1177.PubMedCrossRefGoogle Scholar
  71. Zhou, F.Q., Zhou, J., Dedhar, S., Wu, Y.H., and Snider, W.D., 2004, NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC, Neuron 42: 897–912.PubMedCrossRefGoogle Scholar
  72. Zumbrunn, J., Kinoshita, K., Hyman, A.A., and Nathke, I.S., 2001, Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation, Curr. Biol. 11: 44–49.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Silvana B. Rosso
    • 1
  • Patricia C. Salinas
    • 2
  1. 1.Department of Anatomy and Developmental BiologyUniversity College LondonLondonUK
  2. 2.Department of Anatomy and Developmental BiologyUniversity College LondonLondonUK

Personalised recommendations