Advertisement

Computability on Topological Spaces via Domain Representations

  • Viggo Stoltenberg-Hansen
  • John V. Tucker

Domains are ordered structures designed to model computation with approximations. We give an introduction to the theory of computability for topological spaces based on representing topological spaces and algebras using domains. Among the topics covered are different approaches to computability on topological spaces; orderings, approximations, and domains; making domain representations; effective domains; classifying representations; type two effectivity and domains; and special representations for inverse limits, regular spaces, and metric spaces. Lastly, we sketch a variety of applications of the theory in algebra, calculus, graphics, and hardware.

Keywords

Topological Space Inverse Limit Computability Theory Process Algebra Domain Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G . ALEFELD AND J . HERZBERGER, Introduction to Interval Computations, Academic Press, New York, 1983.MATHGoogle Scholar
  2. 2.
    C . E . AULL AND R . L . OWEN (editors), Handbook of the History of General Topology, Volume 1, Kluwer Academic Publishers, Dordrecht, 1997.MATHGoogle Scholar
  3. 3.
    C . E . AULL AND R . L . OWEN (editors), Handbook of the History of General Topology, Volume 2, Kluwer Academic Publishers, Dordrecht, 1998.MATHGoogle Scholar
  4. 4.
    A . BAUER, A relationship between equilogical spaces and type two effectivity, Mathematical Logic Quarterly 48 (2002), 1-15.MATHCrossRefGoogle Scholar
  5. 5.
    A . BAUER , L . BIRKEDAL AND D . S . SCOTT, Equilogical spaces, Theoretical Computer Science 315 (2004), 35-59.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    U . BERGER, Total sets and objects in domain theory, Annals of Pure and Applied Logic 60(1993), 91-117.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J . A . BERGSTRA , A . PONSE AND S . A . SMOLKA, Handbook of Process Algebra, Elsevier, Amsterdam, 2001.MATHGoogle Scholar
  8. 8.
    J . BLANCK, Computability on Topological Spaces by Effective Domain Representations, Uppsala Dissertations in Mathematics 7, 1997.Google Scholar
  9. 9.
    J . BLANCK, Domain representability of metric spaces, Annals of Pure and Applied Logic 83(1997), 225-247.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J . BLANCK, Domain representations of topological spaces, Theoretical Computer Science 247(2000), 229-255. MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J . BLANCK, Efficient exact computation of iterated maps, Journal of Logic and Algebraic Programming 64 (2005), 41-59.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J . BLANCK, Exact real arithmetic using centered intervals and bounded error, Journal of Logic and Algebraic Programming 66 (2006), 50-67.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J . BLANCK, Reducibility of Domain Representations and Cantor-Weihrauch Domain Representations, Report CSR 15-2006, Department of Computer Science, Swansea Uni-versity.Google Scholar
  14. 14.
    J . BLANCK , V. STOLTENBERG-HANSEN AND J . V. TUCKER, Streams, stream trans-formers and domain representations, in B Moller and J. V. Tucker (eds.), Prospects for Hardware Foundations, Lecture Notes in Computer Science, volume 1546, Springer Ver-lag, New York, 1998, 27-68.Google Scholar
  15. 15.
    J . BLANCK , V. STOLTENBERG-HANSEN AND J . V. TUCKER, Domain representations of partial functions, with applications to spatial objects and constructive volume geometry, Theoretical Computer Science 284 (2002), 207-224.Google Scholar
  16. 16.
    L . BLUM , F. CUCKER , M . SHUB , AND S . SMALE, Complexity and Real Computation, Springer-Verlag, New York, 1998.Google Scholar
  17. 17.
    G . S . CEITIN, Algorithmic operators in constructive complete separable metric spaces, Doklady Akademii Nauk SSSR 128 (1959), 49-52.MathSciNetGoogle Scholar
  18. 18.
    M . CHEN AND J . V. TUCKER, Constructive volume geometry, Computer Graphics Forum 19 (2000), 281-293.CrossRefGoogle Scholar
  19. 19.
    F. DAHLGREN, Partial continuous functions and admissible domain representations (ex-tended abstract), in A. Beckman et al. (eds.), Logical Approaches to Computational Barriers, Lecture Notes in Computer Science, volume 3988, Springer-Verlag, New York, 2006, 94-104.Google Scholar
  20. 20.
    F. DAHLGREN, Effective domain representability vs. TTE representability, manuscript,2006.Google Scholar
  21. 21.
    F. DAHLGREN, Effective distribution theory, manuscript, 2006.Google Scholar
  22. 22.
    P. DI GIANANTONIO, Real number computability and domain theory, Information and Computation 127 (1996), 11-25.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    A . EDALAT, Dynamical systems, measures, and fractals via domain theory, Information and Computation 120 (1995), 32-48.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A . EDALAT, Power domains and iterated function systems, Information and Computation124(1996),182-197.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    A . EDALAT, Domains for computation in mathematics, physics and exact real arithmetic,Bulletin of Symbolic Logic 3 (1997), 401-452.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A . EDALAT AND R . HECKMANN, A computational model for metric spaces, TheoreticalComputer Science 193 (1998), 53-73.MATHMathSciNetGoogle Scholar
  27. 27.
    A . EDALAT AND A . LIEUTIER, Foundation of a computable solid modeling, Theoretical Computer Science 284 (2002), 319-345.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A . EDALAT AND A . LIEUTIER, Domain theory and differential calculus (functions of one variable), Mathematical Structures in Computer Science 14 (2004), 771-802.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    A . EDALAT AND A . LIEUTIER, A Domain Theoretic Account of Picard’s Theorem, in J. Diaz et al. (eds.), Automata, Languages and Programming, Lecture Notes in Computer Science, volume 3142, Springer, Berlin, 2004, 494-505.Google Scholar
  30. 30.
    A . EDALAT AND P. SÜNDERHAUF, A domain-theoretic approach to computability on the real line, Theoretical Computer Science 210 (1999), 73-98.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    A . EDALAT AND P. SÜNDERHAUF, Computable banach spaces via domain theory, The-oretical Computer Science 219 (1999), 169-184.MATHCrossRefGoogle Scholar
  32. 32.
    YU . L . ERSHOV, The theory of A-spaces, Algebra and Logic 12 (1973), 209-232.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    YU . L . ERSHOV, The model C of the partial continuous functionals, in R. O. Gandyand J. M. E. Hyland (eds.), Logic Colloquium 76, North-Holland, Amsterdam, 1977, 455-467.CrossRefGoogle Scholar
  34. 34.
    YU . L . ERSHOV, Theory of Numerations, Monographs in Mathematical Logic and the Foundation of Mathematics, ‘Nauka’, Moscow, 1977.Google Scholar
  35. 35.
    YU . L . ERSHOV, Theorie der Numerierungen III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 23 (1977), 289-371.MATHCrossRefGoogle Scholar
  36. 36.
    A . FRÖLICH AND J . C . SHEPHERDSON, Effective procedures in field theory, Philosoph-ical Transactions of the Royal Society London. Ser. A. 248 (1956), 407-432.Google Scholar
  37. 37.
    A . GRZEGORCZYK, On the definitions of computable real continuous functions, Funda-menta Mathematicae 44 (1957), 61-71.MATHMathSciNetGoogle Scholar
  38. 38.
    G . HAMRIN, Effective Domains and Admissible Domain Representations, Uppsala Dissertations in Mathematics 42, 2005.Google Scholar
  39. 39.
    I . M . JAMES (editor), History of Topology, North-Holland, Amsterdam, 1999.MATHGoogle Scholar
  40. 40.
    K . JOHNSON, The algebraic specification of spatial data types with applications to constructive volume geometry, PhD Thesis, Department of Computer Science, Swansea University, 2006.Google Scholar
  41. 41.
    G . KREISEL , D . LACOMBE , AND J . R . SHOENFIELD, Partial recursive functionals and effective operations, in A. Heyting (ed.), Constructivity in Mathematics, North-Holland, Amsterdam, 1959, 195-207.Google Scholar
  42. 42.
    B . A . KUSHNER, Lectures on Constructive Mathematical Analysis, Translations of Math-ematical Monographs, v. 60, AMS, Providence, 1984.Google Scholar
  43. 43.
    P. KØBER, Uniform domain representations of lp-spaces, Mathematical Logic Quarterly53(2007),180-205.Google Scholar
  44. 44.
    A . H . LACHLAN AND E . W. MADISON, Computable fields and arithmetically definable ordered fields, Proceedings of the American Mathematical Society 24 (1970), 803-807.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    D . LACOMBE, Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles, I, II, III. Comptes Rendus 240, 241 (1955), 2478-2480, 13-14,151-155.Google Scholar
  46. 46.
    E . W. MADISON, A note on computable real fields, Journal of Symbolic Logic 35 (1970), 239-241.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    A . I . MAL’CEV, Cconstructive algebras, I, The Metamathematics of Algebraic Systems. Collected papers: 1936-1967, North-Holland, Amsterdam, 1971, 148-212.Google Scholar
  48. 48.
    M . MENNI AND A . SIMPSON, Topological and limit-space subcategories of countably-based equilogical spaces, Mathematical Structures in Computer Science 12 (2002), 739-770.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    R . E . MOORE, Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.MATHGoogle Scholar
  50. 50.
    Y. N . MOSCHOVAKIS, Recursive metric spaces, Fundamenta Mathematicae 55 (1964),215-238.MATHMathSciNetGoogle Scholar
  51. 51.
    D . NORMANN, Recursion on the Countable Functionals, Springer Lecture Notes in Mathematics 811, 1980.Google Scholar
  52. 52.
    D . NORMANN, A hierarchy of domains with totality but without density, in B. Cooper, T. Slaman and S. S. Wainer (eds.), Computability, Enumerability, Unsolvability, Cambridge University Press, 1996, 233-257.Google Scholar
  53. 53.
    D . NORMANN, The continuous functionals of finite types over the reals, Elkectronic Notes in Theoretical Computer Science 35 (2000).Google Scholar
  54. 54.
    D . NORMANN, The continuous functionals of finite types over the reals, in K. Keimel, G. Q. Zhang, Y. Liu and Y. Chen (eds.), Domains and Processes, Proc. 1st Intern. Symp. on Domain Theory, Shanghai, China, 1999, Kluwer, Boston, 2001, 103-124.Google Scholar
  55. 55.
    E . PALMGREN AND V. STOLTENBERG-HANSEN, Domain interpretations of Martin-Löf ’s partial type theory, Annals of Pure and Applied Logic 48 (1990), 135-196.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    M . B . POUR-EL AND J . I . RICHARDS, Computability in Analysis and Physics, Perspec-tives in Mathematical Logic, Springer-Verlag, Berlin, 1989.Google Scholar
  57. 57.
    H . RICE, Recursive real numbers, Proceedings of the American Mathematical Society 5(1954),784-791.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    R . SANTIAGO , B . BEDREGAL AND B . ACIÓLY, Formal aspects of correctness and optimality of interval computations, Formal Aspects of Computing 18 (2006), 231-243.MATHCrossRefGoogle Scholar
  59. 59.
    M . SCHRÖDER, Extended admissibility, Theoretical Computer Science 284 (2002), 519-538.MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    D . S . SCOTT, A theory of computable functionals of higher type, Unpublished notes, Oxford University, 1969.Google Scholar
  61. 61.
    D . S . SCOTT, Continuous lattices, in F. W. Lawvere (ed.), Toposes, Algebraic Geometryand Logic, Springer Lecture Notes in Mathematics, volume 274, Springer-Verlag, Berlin,1972,97-136.Google Scholar
  62. 62.
    D . S . SCOTT, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science 121 (1993), 411-440.Google Scholar
  63. 63.
    M . B . SMYTH, Topology, in S. Abramsky, D. Gabbay, and T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Volume 1, Oxford University Press, 1992, 641-751.Google Scholar
  64. 64.
    D . SPREEN, Effective inseparability in a topological setting, Annals of Pure and AppliedLogic 80 (1996), 257-275.MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    D . SPREEN, On effective topological spaces, Journal of Symbolic Logic 63 (1998), 185-221.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    D . SPREEN, Representations versus numberings: on the relationship of two computability notions, Theoretical Computer Science 262 (2001), 473-499.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    D . SPREEN AND H . SCHULZ, On the Equivalence of some approaches to computability on the real line, in K. Keimel, G. Q. Zhang, Y. Liu and Y. Chen (eds.), Domains and Processes, Proc. 1st Intern. Symp. on Domain Theory, Shanghai, China, 1999, Kluwer, Boston, 2001, 67-101.Google Scholar
  68. 68.
    V. STOLTENBERG-HANSEN , I . LINDSTRÖM AND E . R . GRIFFOR, Mathematical Theoryof Domains, Cambridge University Press, 1994.Google Scholar
  69. 69.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Complete local rings as domains, Re-port 1.85, Centre for Theoretical Computer Science, University of Leeds, Leeds, 1985.Google Scholar
  70. 70.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Complete local rings as domains, Jour-nal of Symbolic Logic 53 (1988), 603-624.Google Scholar
  71. 71.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Algebraic equations and fixed-point equations in inverse limits, Theoretical Computer Science 87 (1991), 1-24.MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Infinite systems of equations over in-verse limits and infinite synchronous concurrent algorithms, in J. W. de Bakker, W. P. de Roever and G. Rozenberg (eds.), Semantics-Foundations and Applications, Lecture Notes in Computer Science, volume 666, Springer Verlag, Berlin, 1993, 531-562.Google Scholar
  73. 73.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Effective algebra, in S. Abramsky, D. Gabbay, and T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Volume 4, Oxford University Press, 1995, 357-526.Google Scholar
  74. 74.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Computable rings and fields, in E. Grif-for (ed.), Handbook of Computability Theory, Elsevier, 1999, 363-447.Google Scholar
  75. 75.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Concrete models of computation for topological algebras, Theoretical Computer Science 219 (1999), 347-378.MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    V. STOLTENBERG-HANSEN AND J . V. TUCKER, Computable and continuous par-tial homomorphisms on metric partial algebras, Bulletin of Symbolic Logic 9 (2003), 299-334.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    A . TARSKI, A lattice-theoretical fixed point theorem and its applications, Pacific Journal of Mathematics 5 (1955), 285-309MATHMathSciNetGoogle Scholar
  78. 78.
    J . V. TUCKER AND J . I . ZUCKER, Computation by while programs on topological partial algebras, Theoretical Computer Science 219 (1999), 379-421.MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    J . V. TUCKER AND J . I . ZUCKER, Computable functions and semicomputable sets on many sorted algebras, in S. Abramsky, D. Gabbay and T. Maibaum (eds.), Handbook of Logic for Computer Science, Volume 5, Oxford University Press, 2000, 317-523.Google Scholar
  80. 80.
    J . V. TUCKER AND J . I . ZUCKER, Abstract versus concrete computation on metric partial algebras, ACM Transactions on Computational Logic 5 (4) (2004), 611-668.Google Scholar
  81. 81.
    J . V. TUCKER AND J . I . ZUCKER, Abstract versus concrete computability: The case of countable algebras, in V. Stoltenberg-Hansen and J. Väänänen (eds.), Logic Collo-quium 03, Proceedings of Annual European Summer Meeting of Association for Symbolic Logic, Helsinki, 2003, Lecture Notes in Logic 24, Association for Symbolic Logic, 2006, 377-408.Google Scholar
  82. 82.
    G . WAAGBØ, Denotational semantics for intuitionistic type theory using a hierarchy of domains with totality, Archive for Mathematical Logic 38 (1999), 19-60.CrossRefMathSciNetGoogle Scholar
  83. 83.
    K . WEIHRAUCH, Computability, Springer Verlag, New York, 1987.MATHGoogle Scholar
  84. 84.
    K . WEIHRAUCH, Computable Analysis, Springer Verlag, New York, 2000.MATHGoogle Scholar
  85. 85.
    K . WEIHRAUCH AND U . SCHREIBER Embedding metric spaces into cpo’s, Theoretical Computer Science 16 (1981), 5-24.MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    K . WEIHRAUCH AND N . ZHONG, Computability theory of generalized functions, Journal of the ACM 50 (2003), 469-505.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Viggo Stoltenberg-Hansen
    • 1
  • John V. Tucker
    • 2
  1. 1.Department of MathematicsUppsala UniversitySweden
  2. 2.Department of Computer ScienceUniversity of Wales SwanseaUK

Personalised recommendations