Skip to main content

Computability on Topological Spaces via Domain Representations

  • Chapter
New Computational Paradigms

Domains are ordered structures designed to model computation with approximations. We give an introduction to the theory of computability for topological spaces based on representing topological spaces and algebras using domains. Among the topics covered are different approaches to computability on topological spaces; orderings, approximations, and domains; making domain representations; effective domains; classifying representations; type two effectivity and domains; and special representations for inverse limits, regular spaces, and metric spaces. Lastly, we sketch a variety of applications of the theory in algebra, calculus, graphics, and hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G . ALEFELD AND J . HERZBERGER, Introduction to Interval Computations, Academic Press, New York, 1983.

    MATH  Google Scholar 

  2. C . E . AULL AND R . L . OWEN (editors), Handbook of the History of General Topology, Volume 1, Kluwer Academic Publishers, Dordrecht, 1997.

    MATH  Google Scholar 

  3. C . E . AULL AND R . L . OWEN (editors), Handbook of the History of General Topology, Volume 2, Kluwer Academic Publishers, Dordrecht, 1998.

    MATH  Google Scholar 

  4. A . BAUER, A relationship between equilogical spaces and type two effectivity, Mathematical Logic Quarterly 48 (2002), 1-15.

    Article  MATH  Google Scholar 

  5. A . BAUER , L . BIRKEDAL AND D . S . SCOTT, Equilogical spaces, Theoretical Computer Science 315 (2004), 35-59.

    Article  MATH  MathSciNet  Google Scholar 

  6. U . BERGER, Total sets and objects in domain theory, Annals of Pure and Applied Logic 60(1993), 91-117.

    Article  MATH  MathSciNet  Google Scholar 

  7. J . A . BERGSTRA , A . PONSE AND S . A . SMOLKA, Handbook of Process Algebra, Elsevier, Amsterdam, 2001.

    MATH  Google Scholar 

  8. J . BLANCK, Computability on Topological Spaces by Effective Domain Representations, Uppsala Dissertations in Mathematics 7, 1997.

    Google Scholar 

  9. J . BLANCK, Domain representability of metric spaces, Annals of Pure and Applied Logic 83(1997), 225-247.

    Article  MATH  MathSciNet  Google Scholar 

  10. J . BLANCK, Domain representations of topological spaces, Theoretical Computer Science 247(2000), 229-255.

    Article  MATH  MathSciNet  Google Scholar 

  11. J . BLANCK, Efficient exact computation of iterated maps, Journal of Logic and Algebraic Programming 64 (2005), 41-59.

    Article  MATH  MathSciNet  Google Scholar 

  12. J . BLANCK, Exact real arithmetic using centered intervals and bounded error, Journal of Logic and Algebraic Programming 66 (2006), 50-67.

    Article  MATH  MathSciNet  Google Scholar 

  13. J . BLANCK, Reducibility of Domain Representations and Cantor-Weihrauch Domain Representations, Report CSR 15-2006, Department of Computer Science, Swansea Uni-versity.

    Google Scholar 

  14. J . BLANCK , V. STOLTENBERG-HANSEN AND J . V. TUCKER, Streams, stream trans-formers and domain representations, in B Moller and J. V. Tucker (eds.), Prospects for Hardware Foundations, Lecture Notes in Computer Science, volume 1546, Springer Ver-lag, New York, 1998, 27-68.

    Google Scholar 

  15. J . BLANCK , V. STOLTENBERG-HANSEN AND J . V. TUCKER, Domain representations of partial functions, with applications to spatial objects and constructive volume geometry, Theoretical Computer Science 284 (2002), 207-224.

    Google Scholar 

  16. L . BLUM , F. CUCKER , M . SHUB , AND S . SMALE, Complexity and Real Computation, Springer-Verlag, New York, 1998.

    Google Scholar 

  17. G . S . CEITIN, Algorithmic operators in constructive complete separable metric spaces, Doklady Akademii Nauk SSSR 128 (1959), 49-52.

    MathSciNet  Google Scholar 

  18. M . CHEN AND J . V. TUCKER, Constructive volume geometry, Computer Graphics Forum 19 (2000), 281-293.

    Article  Google Scholar 

  19. F. DAHLGREN, Partial continuous functions and admissible domain representations (ex-tended abstract), in A. Beckman et al. (eds.), Logical Approaches to Computational Barriers, Lecture Notes in Computer Science, volume 3988, Springer-Verlag, New York, 2006, 94-104.

    Google Scholar 

  20. F. DAHLGREN, Effective domain representability vs. TTE representability, manuscript,2006.

    Google Scholar 

  21. F. DAHLGREN, Effective distribution theory, manuscript, 2006.

    Google Scholar 

  22. P. DI GIANANTONIO, Real number computability and domain theory, Information and Computation 127 (1996), 11-25.

    Article  MATH  MathSciNet  Google Scholar 

  23. A . EDALAT, Dynamical systems, measures, and fractals via domain theory, Information and Computation 120 (1995), 32-48.

    Article  MATH  MathSciNet  Google Scholar 

  24. A . EDALAT, Power domains and iterated function systems, Information and Computation124(1996),182-197.

    Article  MATH  MathSciNet  Google Scholar 

  25. A . EDALAT, Domains for computation in mathematics, physics and exact real arithmetic,Bulletin of Symbolic Logic 3 (1997), 401-452.

    Article  MATH  MathSciNet  Google Scholar 

  26. A . EDALAT AND R . HECKMANN, A computational model for metric spaces, TheoreticalComputer Science 193 (1998), 53-73.

    MATH  MathSciNet  Google Scholar 

  27. A . EDALAT AND A . LIEUTIER, Foundation of a computable solid modeling, Theoretical Computer Science 284 (2002), 319-345.

    Article  MATH  MathSciNet  Google Scholar 

  28. A . EDALAT AND A . LIEUTIER, Domain theory and differential calculus (functions of one variable), Mathematical Structures in Computer Science 14 (2004), 771-802.

    Article  MATH  MathSciNet  Google Scholar 

  29. A . EDALAT AND A . LIEUTIER, A Domain Theoretic Account of Picard’s Theorem, in J. Diaz et al. (eds.), Automata, Languages and Programming, Lecture Notes in Computer Science, volume 3142, Springer, Berlin, 2004, 494-505.

    Google Scholar 

  30. A . EDALAT AND P. SÃœNDERHAUF, A domain-theoretic approach to computability on the real line, Theoretical Computer Science 210 (1999), 73-98.

    Article  MATH  MathSciNet  Google Scholar 

  31. A . EDALAT AND P. SÃœNDERHAUF, Computable banach spaces via domain theory, The-oretical Computer Science 219 (1999), 169-184.

    Article  MATH  Google Scholar 

  32. YU . L . ERSHOV, The theory of A-spaces, Algebra and Logic 12 (1973), 209-232.

    Article  MATH  MathSciNet  Google Scholar 

  33. YU . L . ERSHOV, The model C of the partial continuous functionals, in R. O. Gandyand J. M. E. Hyland (eds.), Logic Colloquium 76, North-Holland, Amsterdam, 1977, 455-467.

    Chapter  Google Scholar 

  34. YU . L . ERSHOV, Theory of Numerations, Monographs in Mathematical Logic and the Foundation of Mathematics, ‘Nauka’, Moscow, 1977.

    Google Scholar 

  35. YU . L . ERSHOV, Theorie der Numerierungen III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 23 (1977), 289-371.

    Article  MATH  Google Scholar 

  36. A . FRÖLICH AND J . C . SHEPHERDSON, Effective procedures in field theory, Philosoph-ical Transactions of the Royal Society London. Ser. A. 248 (1956), 407-432.

    Google Scholar 

  37. A . GRZEGORCZYK, On the definitions of computable real continuous functions, Funda-menta Mathematicae 44 (1957), 61-71.

    MATH  MathSciNet  Google Scholar 

  38. G . HAMRIN, Effective Domains and Admissible Domain Representations, Uppsala Dissertations in Mathematics 42, 2005.

    Google Scholar 

  39. I . M . JAMES (editor), History of Topology, North-Holland, Amsterdam, 1999.

    MATH  Google Scholar 

  40. K . JOHNSON, The algebraic specification of spatial data types with applications to constructive volume geometry, PhD Thesis, Department of Computer Science, Swansea University, 2006.

    Google Scholar 

  41. G . KREISEL , D . LACOMBE , AND J . R . SHOENFIELD, Partial recursive functionals and effective operations, in A. Heyting (ed.), Constructivity in Mathematics, North-Holland, Amsterdam, 1959, 195-207.

    Google Scholar 

  42. B . A . KUSHNER, Lectures on Constructive Mathematical Analysis, Translations of Math-ematical Monographs, v. 60, AMS, Providence, 1984.

    Google Scholar 

  43. P. KØBER, Uniform domain representations of lp-spaces, Mathematical Logic Quarterly53(2007),180-205.

    Google Scholar 

  44. A . H . LACHLAN AND E . W. MADISON, Computable fields and arithmetically definable ordered fields, Proceedings of the American Mathematical Society 24 (1970), 803-807.

    Article  MATH  MathSciNet  Google Scholar 

  45. D . LACOMBE, Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles, I, II, III. Comptes Rendus 240, 241 (1955), 2478-2480, 13-14,151-155.

    Google Scholar 

  46. E . W. MADISON, A note on computable real fields, Journal of Symbolic Logic 35 (1970), 239-241.

    Article  MATH  MathSciNet  Google Scholar 

  47. A . I . MAL’CEV, Cconstructive algebras, I, The Metamathematics of Algebraic Systems. Collected papers: 1936-1967, North-Holland, Amsterdam, 1971, 148-212.

    Google Scholar 

  48. M . MENNI AND A . SIMPSON, Topological and limit-space subcategories of countably-based equilogical spaces, Mathematical Structures in Computer Science 12 (2002), 739-770.

    Article  MATH  MathSciNet  Google Scholar 

  49. R . E . MOORE, Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

    MATH  Google Scholar 

  50. Y. N . MOSCHOVAKIS, Recursive metric spaces, Fundamenta Mathematicae 55 (1964),215-238.

    MATH  MathSciNet  Google Scholar 

  51. D . NORMANN, Recursion on the Countable Functionals, Springer Lecture Notes in Mathematics 811, 1980.

    Google Scholar 

  52. D . NORMANN, A hierarchy of domains with totality but without density, in B. Cooper, T. Slaman and S. S. Wainer (eds.), Computability, Enumerability, Unsolvability, Cambridge University Press, 1996, 233-257.

    Google Scholar 

  53. D . NORMANN, The continuous functionals of finite types over the reals, Elkectronic Notes in Theoretical Computer Science 35 (2000).

    Google Scholar 

  54. D . NORMANN, The continuous functionals of finite types over the reals, in K. Keimel, G. Q. Zhang, Y. Liu and Y. Chen (eds.), Domains and Processes, Proc. 1st Intern. Symp. on Domain Theory, Shanghai, China, 1999, Kluwer, Boston, 2001, 103-124.

    Google Scholar 

  55. E . PALMGREN AND V. STOLTENBERG-HANSEN, Domain interpretations of Martin-Löf ’s partial type theory, Annals of Pure and Applied Logic 48 (1990), 135-196.

    Article  MATH  MathSciNet  Google Scholar 

  56. M . B . POUR-EL AND J . I . RICHARDS, Computability in Analysis and Physics, Perspec-tives in Mathematical Logic, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  57. H . RICE, Recursive real numbers, Proceedings of the American Mathematical Society 5(1954),784-791.

    Article  MATH  MathSciNet  Google Scholar 

  58. R . SANTIAGO , B . BEDREGAL AND B . ACIÓLY, Formal aspects of correctness and optimality of interval computations, Formal Aspects of Computing 18 (2006), 231-243.

    Article  MATH  Google Scholar 

  59. M . SCHRÖDER, Extended admissibility, Theoretical Computer Science 284 (2002), 519-538.

    Article  MATH  MathSciNet  Google Scholar 

  60. D . S . SCOTT, A theory of computable functionals of higher type, Unpublished notes, Oxford University, 1969.

    Google Scholar 

  61. D . S . SCOTT, Continuous lattices, in F. W. Lawvere (ed.), Toposes, Algebraic Geometryand Logic, Springer Lecture Notes in Mathematics, volume 274, Springer-Verlag, Berlin,1972,97-136.

    Google Scholar 

  62. D . S . SCOTT, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science 121 (1993), 411-440.

    Google Scholar 

  63. M . B . SMYTH, Topology, in S. Abramsky, D. Gabbay, and T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Volume 1, Oxford University Press, 1992, 641-751.

    Google Scholar 

  64. D . SPREEN, Effective inseparability in a topological setting, Annals of Pure and AppliedLogic 80 (1996), 257-275.

    Article  MATH  MathSciNet  Google Scholar 

  65. D . SPREEN, On effective topological spaces, Journal of Symbolic Logic 63 (1998), 185-221.

    Article  MATH  MathSciNet  Google Scholar 

  66. D . SPREEN, Representations versus numberings: on the relationship of two computability notions, Theoretical Computer Science 262 (2001), 473-499.

    Article  MATH  MathSciNet  Google Scholar 

  67. D . SPREEN AND H . SCHULZ, On the Equivalence of some approaches to computability on the real line, in K. Keimel, G. Q. Zhang, Y. Liu and Y. Chen (eds.), Domains and Processes, Proc. 1st Intern. Symp. on Domain Theory, Shanghai, China, 1999, Kluwer, Boston, 2001, 67-101.

    Google Scholar 

  68. V. STOLTENBERG-HANSEN , I . LINDSTRÖM AND E . R . GRIFFOR, Mathematical Theoryof Domains, Cambridge University Press, 1994.

    Google Scholar 

  69. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Complete local rings as domains, Re-port 1.85, Centre for Theoretical Computer Science, University of Leeds, Leeds, 1985.

    Google Scholar 

  70. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Complete local rings as domains, Jour-nal of Symbolic Logic 53 (1988), 603-624.

    Google Scholar 

  71. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Algebraic equations and fixed-point equations in inverse limits, Theoretical Computer Science 87 (1991), 1-24.

    Article  MATH  MathSciNet  Google Scholar 

  72. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Infinite systems of equations over in-verse limits and infinite synchronous concurrent algorithms, in J. W. de Bakker, W. P. de Roever and G. Rozenberg (eds.), Semantics-Foundations and Applications, Lecture Notes in Computer Science, volume 666, Springer Verlag, Berlin, 1993, 531-562.

    Google Scholar 

  73. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Effective algebra, in S. Abramsky, D. Gabbay, and T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Volume 4, Oxford University Press, 1995, 357-526.

    Google Scholar 

  74. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Computable rings and fields, in E. Grif-for (ed.), Handbook of Computability Theory, Elsevier, 1999, 363-447.

    Google Scholar 

  75. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Concrete models of computation for topological algebras, Theoretical Computer Science 219 (1999), 347-378.

    Article  MATH  MathSciNet  Google Scholar 

  76. V. STOLTENBERG-HANSEN AND J . V. TUCKER, Computable and continuous par-tial homomorphisms on metric partial algebras, Bulletin of Symbolic Logic 9 (2003), 299-334.

    Article  MATH  MathSciNet  Google Scholar 

  77. A . TARSKI, A lattice-theoretical fixed point theorem and its applications, Pacific Journal of Mathematics 5 (1955), 285-309

    MATH  MathSciNet  Google Scholar 

  78. J . V. TUCKER AND J . I . ZUCKER, Computation by while programs on topological partial algebras, Theoretical Computer Science 219 (1999), 379-421.

    Article  MATH  MathSciNet  Google Scholar 

  79. J . V. TUCKER AND J . I . ZUCKER, Computable functions and semicomputable sets on many sorted algebras, in S. Abramsky, D. Gabbay and T. Maibaum (eds.), Handbook of Logic for Computer Science, Volume 5, Oxford University Press, 2000, 317-523.

    Google Scholar 

  80. J . V. TUCKER AND J . I . ZUCKER, Abstract versus concrete computation on metric partial algebras, ACM Transactions on Computational Logic 5 (4) (2004), 611-668.

    Google Scholar 

  81. J . V. TUCKER AND J . I . ZUCKER, Abstract versus concrete computability: The case of countable algebras, in V. Stoltenberg-Hansen and J. Väänänen (eds.), Logic Collo-quium 03, Proceedings of Annual European Summer Meeting of Association for Symbolic Logic, Helsinki, 2003, Lecture Notes in Logic 24, Association for Symbolic Logic, 2006, 377-408.

    Google Scholar 

  82. G . WAAGBØ, Denotational semantics for intuitionistic type theory using a hierarchy of domains with totality, Archive for Mathematical Logic 38 (1999), 19-60.

    Article  MathSciNet  Google Scholar 

  83. K . WEIHRAUCH, Computability, Springer Verlag, New York, 1987.

    MATH  Google Scholar 

  84. K . WEIHRAUCH, Computable Analysis, Springer Verlag, New York, 2000.

    MATH  Google Scholar 

  85. K . WEIHRAUCH AND U . SCHREIBER Embedding metric spaces into cpo’s, Theoretical Computer Science 16 (1981), 5-24.

    Article  MATH  MathSciNet  Google Scholar 

  86. K . WEIHRAUCH AND N . ZHONG, Computability theory of generalized functions, Journal of the ACM 50 (2003), 469-505.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stoltenberg-Hansen, V., Tucker, J.V. (2008). Computability on Topological Spaces via Domain Representations. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) New Computational Paradigms. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68546-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68546-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-36033-1

  • Online ISBN: 978-0-387-68546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics