Skip to main content

Applications of the Kleene–Kreisel Density Theorem to Theoretical Computer Science

  • Chapter
New Computational Paradigms

The Kleene–Kreisel density theorem is one of the tools used to investigate the denotational semantics of programs involving higher types.We give a brief introduction to the classic density theorem, then show how this may be generalized to set theoretical models for algorithms accepting real numbers as inputs, and finally survey some recent applications of this generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S. and Jung, A., Domain Theory, in S. Abramsky, D.M. Gabbay and T.S.E. Maibaum (eds.), Handbook of Logic in Computer Science, vol. 3, Clarendon Press (1994)

    Google Scholar 

  2. Amadio, R. M. and Curien, P. -L. , Domains and Lambda-Calculi, Cambridge University Press (1998)

    Google Scholar 

  3. Bauer, A., Escardó, M.H. and Simpson, A., Comparing Functional Paradigms for Exact Real-number Computation, in Proceedings ICALP 2002, Springer LNCS 2380, 488-500 (2002)

    Google Scholar 

  4. Berger, U., Totale Objekte und Mengen in der Bereichtheorie (in German), Thesis, München (1990)

    Google Scholar 

  5. DeJaeger, F., Calculabilité sur les Réels, Thesis, Paris VII (2003)

    Google Scholar 

  6. DiGianantonio, P., A Functional Approach to Computability on Real Numbers, Thesis, Università di Pisa - Genova - Udine, (1993)

    Google Scholar 

  7. DiGianantonio, P., Real number computability and domain theory, Inform. and Comput.127,11-25 (1996)

    Article  MathSciNet  Google Scholar 

  8. DiGianantonio, P., An abstract data type for real numbers, Theoret. Comput. Sci. 221,295-326 (1999)

    Article  MathSciNet  Google Scholar 

  9. Ershov, Yu. L., Maximal and everywhere defined functionals, Algebra and Logic 13, 210-225(1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gandy, R.O. and Hyland, J.M.E., Computable and recursively countable functions of higher type, Logic Colloquium ’76, 407-438, North-Holland (1977)

    Google Scholar 

  11. Hyland, J.M.E., Recursion on the Countable Functionals, Dissertation, Oxford (1975)

    Google Scholar 

  12. Kleene, S. C., Recursive functionals and quantifiers of finite types I, Trans. Amer. Math. Soc. 91, 1-52 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kleene, S. C., Countable Functionals, in A. Heyting (ed.) Constructivity in Mathematics,81-100, North-Holland (1959)

    Google Scholar 

  14. Kreisel, G. , Interpretation of Analysis by Means of Functionals of Finite Type, in A. Heyting (ed.) Constructivity in Mathematics, North-Holland, 101-128 (1959)

    Google Scholar 

  15. Longley, J.R., On the ubiquity of certain total type structures, Electr. Notes Theor. Com-put. Sci. 73, 87-109 (2004)

    Google Scholar 

  16. Longo, G. and Moggi, E., The hereditary partial effective functionals and recursion the-ory in higher types, J. Symbolic Logic 49, 1319-1332 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Milner, R., Fully abstract models for typed λ-calculi, Theoret. Comput. Sci. 4, 1-22 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moldestad, J., Computations in Higher Types, Springer Lecture Notes in Mathematics No. 574, Springer Verlag (1977)

    Google Scholar 

  19. Normann, D., The continuous functionals; computations, recursions and degrees, Annals of Mathematical Logic 21, 1-26 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Normann, D., Computing with functionals - computability theory or computer science?, Bull. Symbolic Logic 12(1), 43-59, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Normann, D., Computability over the partial continuous functionals, J. Symbolic Logic 65,1133-1142 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Normann, D., The Cook-Berger problem - A guide to the solution, Electr. Notes Theor. Comput. Sci. 35, (2000)

    Google Scholar 

  23. Normann, D., The Continuous Functionals of Finite Types over the Reals, in K. Keimel, G.Q. Zhang, Y. Liu and Y. Chen (eds.) Domains and Processes, Kluwer Academic Publishers, 103-124, (2001)

    Google Scholar 

  24. Normann, D., Hierarchies of total functionals over the reals, Theoret. Comput. Sci. 316, pp. 137-151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Normann, D., Definability and reducibility in higher types over the reals, to appear in the proceedings og Logic Colloquium ’03

    Google Scholar 

  26. Normann, D., Comparing hierarchies of total functionals, Logical Methods in Computer Science 1(2), (2005)

    Google Scholar 

  27. Platek, R. A., Foundations of Recursion Theory, Thesis, Stanford University (1966)

    Google Scholar 

  28. Plotkin, G., LCF considered as a programming language, Theoret. Comput. Sci. 5, 223-255(1977)

    Article  MathSciNet  Google Scholar 

  29. Plotkin, G., Full abstraction, totality and P CF , Math. Struct. in Comp. Science, 11, 1-20 (1999)

    Article  Google Scholar 

  30. Schröder, M., Admissible representations of limit spaces, in J. Blanck, V. Brattka, P. Hertling and K. Weihrauch (eds.), Computability and Complexity in Analysis, vol. 237, Informatik Berichte, 369-388, (2000)

    Google Scholar 

  31. Scott, D., A type-theoretical alternative to ISWIM, CUCH, OWHY, Unpublished notes, Oxford (1969). Printed with suplementary comments in Theoret. Comput. Sci. 121, 411-440 (1993)

    MATH  Google Scholar 

  32. Simpson, A., Lazy functional Algorithms for Exact Real Functionals, Mathematical Foun-dations of Computer Science 1998, Springer LNCS 1450, 456-464, (1998)

    MathSciNet  Google Scholar 

  33. Stoltenberg-Hansen, V., Lindström, I. and Griffor, E.R., Mathematical Theory of Do-mains, Cambridge Tracts in Theor. Comp. Sci. 22, Cambridge University Press (1994)

    Google Scholar 

  34. Tait, W.W., Continuity properties of partial recursive functionals of finite type, unpub-lished notes (1958)

    Google Scholar 

  35. Weihrauch, K., Computable Analysis, in Texts in Theoretical Computer Science, Springer Verlag, Berlin, (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Normann, D. (2008). Applications of the Kleene–Kreisel Density Theorem to Theoretical Computer Science. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) New Computational Paradigms. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68546-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68546-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-36033-1

  • Online ISBN: 978-0-387-68546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics