Computation Paradigms in Light of Hilbert's Tenth Problem

  • Yuri Matiyasevich

This is a survey of a century-long history of interplay between Hilbert’s tenth problem (about solvability of Diophantine equations) and different notions and ideas from Computability Theory. The present paper is an extended version of [83].


Turing Machine Diophantine Equation Computability Theory Rational Integer Register Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman L., Manders K.: Diophantine complexity. In: 17th Annual Symposium on Foundations of Computer Science, 81-88 (1976)Google Scholar
  2. 2.
    Adler A.: Some recursively unsolvable problems in analysis. Proceedings of the American Mathematical Society, 22(2):523-526 (1969)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Araki, T., Kasami, T.: Some undecidable problems for Petri nets. Systems-Computers-Controls, 7(1):20-28 (1976); Japanese original: Denshi Tsushin Gakkai Ronbunshi, 59D:25-32 (1976)MathSciNetGoogle Scholar
  4. 4.
    Baader, F., Siekmann, J. H.: Unification theory. In: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 2, 41-125, Oxford Univ. Press, New York (1994)Google Scholar
  5. 5.
    Baaz, M.: Note on the existence of most general semi-unifier. Arithmetic, Proof Theory, and Computational Complexity (Prague, 1991), 20-29, Oxford Logic Guides, Vol. 23, Oxford Univ. Press, New York (1993)Google Scholar
  6. 6.
    Baxter, L. D.: The undecidability of the third order dyadic unification problem. Information and Control, 38(2):170-178 (1978)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bezem, M., Keuzenkamp, J., Undecidable goals for completed acyclic programs. NewGeneration Comp. 12:209-213 (1994)MATHCrossRefGoogle Scholar
  8. 8.
    Blum M.: A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2):322-336 (1967)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Boas, P. van E.: Dominos are forever. In: Priese, L. (ed) Report on the 1st GTI-workshop, Reihe Theoretische Informatik, Universität-Gesamthochschule Paderborn, 75-95 (1983)Google Scholar
  10. 10.
    Boas, P. van E.: The convenience of tillings. Lect. Notes Pure Appl. Math. 187:331-363 (1997)Google Scholar
  11. 11.
    Bockmayr, A.: A note on a canonical theory with undecidable unification and matching problem. Journal of Automated Reasoning, 3(4):379-381 (1987) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Burke, E. K.: The undecidability of the unification problem for nilpotent groups of class ≥ 5. J. London Math. Soc. (2). 48:52-58 (1993) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Caviness B. F.: On canonical forms and simplification. Journal of the ACM, 17(2):385-396(1970)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chaitin G.: Algorithmic Information Theory. Cambridge University Press, Cambridge, England (1987)CrossRefGoogle Scholar
  15. 15.
    Cornelissen, G., Zahidi, K.: Topology of Diophantine sets: remarks on Mazur’s conjectures. Contemp. Math., 270:253-260 (2000)MathSciNetGoogle Scholar
  16. 16.
    Da Costa, N. C. A., Doria, F. A.: Undecidability and incompleteness in classical mechanics. Int. J. Theor. Physics, 30(8):1041-1073 (1991)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Davis M.: Arithmetical problems and recursively enumerable predicates (abstract). J. Symbolic Logic, 15(1):77-78 (1950)Google Scholar
  18. 18.
    Davis M.: Arithmetical problems and recursively enumerable predicates. J. Symbolic Logic, 18(1):33-41 (1953)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Davis M.: Speed-up theorems and Diophantine equations. In Rustin R. (ed.) Courant Computer Science Symposium 7: Computational Complexity, 87-95. Algorithmics Press, New York (1973)Google Scholar
  20. 20.
    Davis M.: Computability and Unsolvability. Dover Publications, New York (1982)MATHGoogle Scholar
  21. 21.
    Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential Diophantine equations. Ann. Math. (2), 74:425-436 (1961). Reprinted in Feferman, S. (ed.) The collected works of Julia Robinson, Collected Works, 6, American Mathematical Society, Providence, RI (1996)Google Scholar
  22. 22.
    Degtyarev, A., Voronkov, A.: Simultaneous rigid E -unification is undecidable. Lecture Notes in Computer Science, 1092:178-190 (1996)MathSciNetGoogle Scholar
  23. 23.
    Denef, J.: Hilbert’s Tenth Problem for quadratic rings. Proc. Amer. Math. Soc., 48(1):214-220 (1975)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations. Mathematische Annalen, 267(2):213-238 (1984)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Denef, J., Lipshitz, L.: Decision problems for differential equations. J. Symbolic Logic,54(3):941-950 (1989)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Farmer, W. M.: Simple second-order languages for which unification is undecidable. Theoretical Computer Sci., 87:25-41 (1991)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Frisco, P.: Diophantine equations and splicing: a new demonstration of the generative capacity of H systems. Lect. Notes Computer Science, 2054:43-52 (2001)CrossRefGoogle Scholar
  28. 28.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und ver-wandter Systeme. I. Monatsh. Math. und Phys. 38(1):173-198 (1931)CrossRefGoogle Scholar
  29. 29.
    Goldfarb, W., D.: The undecidability of the second-order unification problem. Theoretical Computer Science, 13(2):225-230 (1981)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Goodstein, R. L.: Hilbert’s tenth problem and the independence of recursive difference. J. London Math. Soc. (Second Series), 10(2):175-176 (1975)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Goodstein, R. L., Lee, R. D.: A decidable class of equations in recursive arithmetic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12:235-239 (1966)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Grigor’ev, D. Yu., Singer, M. F.: Solving ordinary differential equations in terms of series with real exponents. Trans. Amer. Math. Soc., 327(1):329-351 (1991)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Grunewald, F., Segal, D.: How to solve a quadratic equation in integers. Math. Proc. Cambridge Philos. Soc., 89(1):1-5 (1981)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Grunewald, F., Segal, D.: On the integer solutions of quadratic equations. Journal of the Reine Angew. Math., 569:13-45 (2004)MATHMathSciNetGoogle Scholar
  35. 35.
    Gurari E. M.: Decidable problems for powerful programs. J. ACM, 32(2):466-483, (1985)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Gurari, E. M., Ibarra, O. H., Two-way counter machines and Diophantine equations, J. ACM, 29(3):863-873 (1982)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Hack, M.: The equality problem for vector addition systems is undecidable. TheoreticalComputer Science, 2(1):77-95 (1976)MATHMathSciNetGoogle Scholar
  38. 38.
    Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs. Journal Computer and System Sciences, 26(2):222-243 (1983)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Head, T.: Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behavior. Bull. Math. Biology, 49 (1987)Google Scholar
  40. 40.
    Hickey, T., Mudambi, S.: Global compilation of Prolog. J. Logic Programming, 7:193-230(1989)CrossRefGoogle Scholar
  41. 41.
    Hilbert, D.: Mathematische Probleme. Vortrag, gehalten auf dem internationalen Math-ematiker Kongress zu Paris 1900. Nachr. K. Ges. Wiss., Göttingen, Math.-Phys.Kl. 253-297 (1900). See also Hilbert, D.: Gesammelte Abhandlungen, Springer, Berlin 3 (1935) (Reprinted: Chelsea, New York (1965)). English translation: Bull. Amer. Math. Soc., 8:437-479 (1901-1902); reprinted in: Browder (ed.) Mathematical Developments arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics 28, Ame-rican Mathematical Society, 1-34 (1976)Google Scholar
  42. 42.
    Hodgson, B. R., Kent, C. F.: A normal form for arithmetical representation of NP -sets. J. Computer System Sci., 27(3):378-388 (1983)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Howell, R. R., Rosier, L. E., Huynh, D. T., Yen H.-Ch.: Some complexity bounds for problems concerning finite and 2-dimensional vector addition systems with states. The-oretical Computer Science, 46(2-3):107-140 (1986)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Ibarra, O. H., Leininger, B. S.: The complexity of the equivalence problem for straight-line programs. Conference Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, Los Angeles, California, 273-280 (1980)Google Scholar
  45. 45.
    Ibarra, O. H., Leininger, B. S.: Straight-line programs with one input variable. SIAM Journal on Computing, 11(1):1-14 (1982)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Ibarra, O. H., Leininger, B. S.: On the simplification and equivalence problems for straight-line programs, J. ACM, 30(3):641-656 (1983)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Ibarra, O. H., Rosier L. e.: The equivalence problem and correctness formulas for a simple class of programs. Lecture Notes Comp. Sci., 176:330-338 (1984)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Jiménez, Á. R., Jiménez, M. J. P.: Generation of Diophantine sets by computing P systems with external output. Lect. Notes Comp. Sci., 2509:176-190 (2002)CrossRefGoogle Scholar
  49. 49.
    Jones, J. P.: Recursive undecidability—an exposition.Amer. Mathem. Monthly, 81(7):724-738 (1974)MATHCrossRefGoogle Scholar
  50. 50.
    Jones, J. P.: Some undecidable determined games. International Journal of Game Theory, 11(2):63-70 (1982)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Jones, J. P.: Universal Diophantine equation. J. Symbolic Logic 47:549-571 (1982)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Jones, J. P.: Computational complexity of winning strategies in two players polynomial games (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matem-aticheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 192:69-73 (1991)Google Scholar
  53. 53.
    Jones, J. P., Fraenkel, A.S.: Complexities of winning strategies in Diophantine games. J. Complexity, 11:435-455 (1995)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Jones, J. P., Matijasevič , Ju. V.: Exponential Diophantine representation of recursively enumerable sets. In: Stern, J. (ed) Proceedings of the Herbrand Symposium: Logic Colloquium’81, Studies in Logic and the Foundations of Mathematics, 107:159-177, North Holland, Amsterdam (1982)Google Scholar
  55. 55.
    Jones, J. P., Matijasevič Ju. V., : A new representation for the symmetric binomial coef-ficient and its applications. Annales Sci. Mathém. du Québec, 6(1):81-97 (1982)MATHGoogle Scholar
  56. 56.
    Jones, J. P., Matijasevič , Ju. V.: Direct translation of register machines into exponen-tial Diophantine equations. In: Priese, L. (ed) Report on the 1st GTI-workshop, Reihe Theoretische Informatik, Universität-Gesamthochschule Paderborn, 117-130 (1983)Google Scholar
  57. 57.
    Jones, J. P., Matijasevič Ju. V., : Register machine proof of the theorem on exponen-tial Diophantine representation of enumerable sets. J. Symbolic Logic, 49(3):818-829 (1984)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Jones, J. P., Matijasevič Ju. V.: Proof of recursive unsolvability of Hilbert’s tenth prob-lem. Amer. Math. Monthly, 98(8):689-709 (1991)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Kasami, T., Nobuki, T.: Equivalence problem of programs without loops. Systems-Computers-Controls, 2(4):83-84 (1971); Japanese original: Denshi Tsushin Gakkai Ronbunshi, 54-C:657-658 (1971)MathSciNetGoogle Scholar
  60. 60.
    Kent, C. F., Hodgson, B. R.: An arithmetical characterization of NP. Theor. Computer Science, 21(3):255-267 (1982)MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Kosovskiĭ, N. K.: On Diophantine representations of the sequence of solutions of Pell equation. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-eskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 20:49-59 (1971)Google Scholar
  62. 62.
    Kreisel, G., Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential Diophantine equations. Mathem. Reviews, 24: #A3061, 573 (1962)Google Scholar
  63. 63.
    Kummer, M. :The complexity of recursion theoretic games. Trans. Amer. Math. Soc., 358:1, 59-86 (electronic) (2006)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Lachlan, A. H.: On some games which are relevant to the theory of recursively enumerable sets. Ann. Math. (2), 91:291-310 (1970)CrossRefMathSciNetGoogle Scholar
  65. 65.
    Lambek, J.: How to program an infinite abacus. Canad. Math. Bull., 4:295-302 (1961)MathSciNetGoogle Scholar
  66. 66.
    Levitz, H.: Decidability of some problem pertaining to base 2 exponential Diophan-tine equations, Zeitschrift Mathematische Logik Grundlagen Mathematik, 31(2):109-115 (1985)CrossRefMathSciNetGoogle Scholar
  67. 67.
    Li, C., Dang, Z., Ibarra, O. H., Yen, H.-Ch.: Signaling P systems and verifications prob-lem. Lecture Notes Comput. Sci., 3580:1462-1473 (2005)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Lipmaa, H.: On Diophantine complexity and statistical zero-knowledge arguments. Lecture Notes Computer Science, 2894:398-415 (2003)MathSciNetGoogle Scholar
  69. 69.
    Livesey, M., Siekmann, J., Szabó, P., and Unvericht, E.: Unification problems for com-binations of associativity, commutativity, distributivity and idempotence axioms. In: William H. J., Jr. (ed), Proceedings of the Fourth Workshop on Automated Deduction, 175-184, Austin, Texas, (1979)Google Scholar
  70. 70.
    Makanin, G. S.: The problem of solvability of equations in a free semigroup (in Russian). Math. Sbornik, 103:147-236 (1977); English transl. in: Math. USSR Sbornik, Math. USSR Sbornik, 32(2):129-198 (1977)Google Scholar
  71. 71.
    Manders, K. L., Adleman, L.: NP-complete decision problems for binary quadratics.J. Comput. System Sci., 16(2):168-184 (1978)MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Markov, A. A.: Impossibility of certain algorithms in the theory of associative systems (in Russian), Dokl. Akad. Nauk SSSR, 55(7):587-590 (1947). Translated in: Compte rendus de l’Académie des Sciences de l’U.R.S.S., 55:583-586 (1947) Google Scholar
  73. 73.
    Martin-Löf, P. Notes on Constructive Mathematics. Almqvist & Wikseil, Stockholm (1970)Google Scholar
  74. 74.
    Matiyasevich, Yu. V.: The connection between Hilbert’s tenth problem and systems of equations between words and lengths (in Russian), Zap. nauch. Seminar. Leningr. otd. Mat. in-ta AN SSSR, 8:132-144 (1968). English translation: Seminars in Mathematics, V. A. Steklov Mathematical Institute, 8:61-67 (1970)Google Scholar
  75. 75.
    Matiyasevich, Yu. V.: Enumerable sets are Diophantine (in Russian). Dokl. AN SSSR, 191 (2):278-282 (1970); Translated in: Soviet Math. Doklady, 11(2):354-358Google Scholar
  76. 76.
    Matiyasevich, Yu. V.: Existence of noneffectivizable estimates in the theory of expo-nential Diophantine equations (in Russian). Zapiski Nauchnykh Seminarov Leningrad-skogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 40:77-93 (1974); Translated in: Journal of Soviet Mathematics, 8(3):299-311 (1977)Google Scholar
  77. 77.
    Matiyasevich, Yu. V.: A new proof of the theorem on exponential Diophantine represen-tation of enumerable sets (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 60:75-92 (1976); Translated in: Journal of Soviet Mathematics, 14(5):1475-1486 (1980)Google Scholar
  78. 78.
    Matiyasevich, Yu. V.: Some purely mathematical results inspired by mathematical logic, In: Proceedings of Fifth International Congress on Logic, Methodology and Philosophy of science, London, Ontario, 1975, Reidel, Dordrecht, 121-127 (1977)Google Scholar
  79. 79.
    Matiyasevich, Yu. V.: Algorithmic unsolvability of exponential Diophantine equations in three unknowns (in Russian), In: Markov, A.A., Homich V.I. (eds), Studies in the Theory of Algorithms and Mathematical Logic, Computing Center Russian Academy Sci., Moscow, 69-78 (1979); Translated in Selecta Mathematica Sovietica, 3:223-232 (1983/1984)Google Scholar
  80. 80.
    Matiyasevich, Yu. V.: Desyataya Problema Gilberta. Fizmatlit, Moscow, (1993). English translation: Hilbert’s Tenth Problem. MIT Press, Cambridge, MA (1993). French trans-lation: Le dixième Problème de Hilbert, Masson, Paris Milan Barselone (1995). URL:∼yumat/H10Pbook,
  81. 81.
    Matiyasevich, Yu.: A direct method for simulating partial recursive functions by Dio-phantine equations. Annals Pure Appl. Logic, 67:325-348 (1994)MATHMathSciNetGoogle Scholar
  82. 82.
    Matiyasevich, Yu.: Hilbert’s tenth problem: what was done and what is to be done Contemporary mathematics, 270:1-47, (2000)MathSciNetGoogle Scholar
  83. 83.
    Matiyasevich, Yu.: Hilbert’s tenth problem and paradigms of computation, Lecture Notes Computer Science, 3526:310-321 (2005)Google Scholar
  84. 84.
    Matiyasevich, Yu.: Diophantine flavor of Kolmogorov complexity. Trans. Inst. Informat-ics and Automation Problems National Acad. Sciences of Armenia, 27:111-122 (2006)Google Scholar
  85. 85.
    Matiyasevich, Yu.: Word Equations, Fibonacci Numbers, and Hilbert’s Tenth Problem. URL:∼yumat/Journal/jcontord.htm
  86. 86.
    Matijasevič Yu. , Robinson, J.: Reduction of an arbitrary Diophantine equation to one in 13 unknowns. Acta Arithmetica, 27:521-553 (1975)MATHMathSciNetGoogle Scholar
  87. 87.
    Mayr E. W., Meyer, A. R.: The complexity of the finite containment problem for Petri nets. Journal of the ACM, 28(3):561-576 (1981)MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Mazur, B.: The topology of rational points. Experimental Mathematics, 1(1):35-45 (1992)MATHMathSciNetGoogle Scholar
  89. 89.
    Mazur, B.: Questions of decidability and undesidability in Number Theory. J. Symbolic Logic, 59(2):353-371 (1994)MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    Melzak, Z. A.: An informal arithmetical approach to computability and computation. Canad. Math. Bull., 4:279-294 (1961)MATHMathSciNetGoogle Scholar
  91. 91.
    Minsky, M. L.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Ann. of Math. (2), 74:437-455 (1961)CrossRefMathSciNetGoogle Scholar
  92. 92.
    Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, EnglewoodCliffs, NJ (1967)MATHGoogle Scholar
  93. 93.
    Ord, T., Kieu, T. D.: On the existence of a new family of Diophantine equations for Ω .Fundam. Inform. 56(3):273-284 (2003)MATHMathSciNetGoogle Scholar
  94. 94.
    Pappas, P.: A Diophantine problem for Laurent polynomial rings. Proceedings of the American Mathematical Society, 93(4):713-718 (1985)MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Paun, Gh.: From cells to (silicon) computers, and back. This volume, pages 343-371Google Scholar
  96. 96.
    Pheidas, Th., Zahidi, K.: Undecidability of existential theories of rings and fields: a survey. Contemp. Math., 270:49-105 (2000)MathSciNetGoogle Scholar
  97. 97.
    Pheidas, Th.: An effort to prove that the existential theory of Q is undecidable. Contemp. Math., 270:237-252 (2000)MathSciNetGoogle Scholar
  98. 98.
    Pollett, Ch.: On the bounded version of Hilbert’s tenth problem. Arch. Math. Logic,42(5):469-488 (2003)MATHMathSciNetGoogle Scholar
  99. 99.
    Poonen, B.: Hilbert’s tenth problem and Mazur’s conjecture for large subrings of Q. J. Amer. Math. Soc., 16(4):981-990 (2003)MATHCrossRefMathSciNetGoogle Scholar
  100. 100.
    Post, E. L.: Formal reductions of the general combinatorial decision problem. Amer. J. Math., 65:197-215 (1943); reprinted in: The Collected Works of E. L. Post, Davis, M. (ed), Birkhäuser, Boston (1994).Google Scholar
  101. 101.
    Post, E. L.: Recursively enumerable sets of positive integers and their decision problems. Bull. Amer. Math. Soc., 50:284-316 (1944); reprinted in: The Collected Works of  E. L. Post, Davis, M. (ed), Birkhäuser, Boston (1994).Google Scholar
  102. 102.
    Post, E. L.: Recursive unsolvability of a problem of Thue. J. Symbolic Logic, 12:1-11(1947); reprinted in: The Collected Works of E. L. Post, Davis, M. (ed), Birkhäuser,Boston (1994).Google Scholar
  103. 103.
    Prasad, K.: Computability and randomness of Nash equilibrium in infinite games. J. Mathem. Economics, 20(5):429-442 (1991).MATHCrossRefGoogle Scholar
  104. 104.
    Reif, J. H., Lewis, H. R.: Efficient symbolic analysis of programs, J. Computer SystemSci., 32(3):280-314 (1986)MATHCrossRefMathSciNetGoogle Scholar
  105. 105.
    Rabin M. O.: Effective computability of winning strategies. In: Dresher, M., Tucker, A. W., Wolff, P. (eds), Contributions to the Theory of Games. Volume III, Annals of Mathematics Studies, 39:147-157 Princeton University Press, Princeton, NJ (1957)Google Scholar
  106. 106.
    Reutenauer, Ch., Aspect Math’ematiques des R’eseaux de Pétri. Masson, Paris Milan Barcelone Mexico (1989); Engl. transl: The Mathematics of Petri Nets, Prentice-Hall, Englewood Cliffs, NJ (1990)Google Scholar
  107. 107.
    D. Richardson, Some undecidable problems involving elementary functions of a real variable. J. Symbolic Logic, 33(4):514-520 (1968)MATHCrossRefMathSciNetGoogle Scholar
  108. 108.
    Robinson, J. A.: A machine-oriented logic based on the resolution principle, J. Assoc. Comput. Mach. 12:23-41 (1965)MATHMathSciNetGoogle Scholar
  109. 109.
    Shepherdson, J. C., Sturgis, H. E.: Computability of recursive functions, J. ACM 10(2):217-255 (1963)MATHCrossRefMathSciNetGoogle Scholar
  110. 110.
    Shirayev, D. V.: Undecidability of some decision problems for straight-line programs (inRussian), Kibernetika, 1:63-66 (1989)Google Scholar
  111. 111.
    Shlapentokh, A.: Hilbert’s tenth problem over number fields, a survey. Contemp. Math., 270:107-143 (2000)MathSciNetGoogle Scholar
  112. 112.
    Shlapentokh, A.: A ring version of Mazur’s conjecture on top[ology of rational points.Int. Math. Res. Notes, 2003(7):411-423 (2003)MATHCrossRefMathSciNetGoogle Scholar
  113. 113.
    Shlapentokh, A.: Hilbert’s Tenth Problem. Diophantine Classes and Extensions to Global Fields. Cambridge Univ. Press, Cambridge, England (2007)MATHGoogle Scholar
  114. 114.
    Siegel, C. L.: Zur Theorie der quadratischen Formen. Nachrichten Akademie Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse, 3:21-46 (1972)Google Scholar
  115. 115.
    Siekmann, J. H., Unification theory. J. Symbolic Comp., 7:207-274 (1989)MATHCrossRefMathSciNetGoogle Scholar
  116. 116.
    Singer, M. F.: The model theory of ordered differential fields. J. Symbolic Logic, 43:1, 82-91 (1978)Google Scholar
  117. 117.
    Skolem, Th.: Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae, 23:150-161 (1934) Google Scholar
  118. 118.
    Stallworth D. T., Roush, F. W.: An undecidable property of definite integrals. Proceedings of the American Mathematical Society, 125(7):2147-2148 (1997) MATHCrossRefMathSciNetGoogle Scholar
  119. 119.
    Sun, Zh.-W.: Reduction of unknowns in Diophantine representations. Science in China (Scientia Sinica) Ser. A., 35(3):257-269 (1992)MATHGoogle Scholar
  120. 120.
    Thue, A.: Problem über Veränderungen von Zeichenreihen nach gegebenen Regeln. Vid. Skr. I. Mat.-natur. Kl., 10:493-524 (1914). Reprinted in: Thue, A.: Selected Mathematical Papers, Oslo (1977)Google Scholar
  121. 121.
    Tiden, E., Arnborg, S.: Unification problems with one-sided distributivity, J. Symbolic Computation, 3:183-202 (1987)MATHCrossRefMathSciNetGoogle Scholar
  122. 122.
    Tseitin, G.S.: A method of presenting the theory of algorithms and enumerable sets (in Russian). Trudy Matematicheskogo instituta im. V. A. Steklova 72 (1964) 69-99. English translation in: Am. Math. Soc. Translat., II. Ser. 99:1-39 (1972)Google Scholar
  123. 123.
    Tung, Sh. P. The bound of Skolem functions and their applications. Information and Computation, 120:149-154 (1995)MATHCrossRefMathSciNetGoogle Scholar
  124. 124.
    Sivaramakrishnan Rajagopalan, S.: Average case intractability of matrix and Diophantine problems. Proceedings Twenty-Fourth Annual ACM Symposium Theory Comput., Victoria, British Columbia, Canada, 632-642 (1992)Google Scholar
  125. 125.
    Vinogradov, A. K., Kosovskiĭ, N. K.: A hierarchy of Diophantine representations of primitive recursive predicates (in Russian). Vychislitel’naya tekhnika i voprosy kiber-netiki, no. 12, 99-107. Lenigradskiĭ Gosudarstvennyĭ Universitet, Leningrad (1975)Google Scholar
  126. 126.
    Wolfson, O.: Parallel evaluation of Datalog programs by load sharing. J. Logic Program-ming, 12:369-393 (1992)CrossRefMathSciNetGoogle Scholar
  127. 127.
    Yukna, S.: Arithmetical representations of classes of computational complexity (in Russian). Matematicheskaya logika i eë primeneniya, no. 2, 92-107, Institut Matematiki i Kibernetiki Akademii Nauk Litovskoĭ SSR, Vil’nyus (1982)Google Scholar
  128. 128.
    Yukna, S.:. On arithmetization of computations (in Russian). Matematicheskaya logika i eë primeneniya, no. 3, 117-125, Institut Matematiki i Kibernetiki Akademii Nauk Litovskoĭ SSR, Vil’nyus (1983)Google Scholar
  129. 129.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yuri Matiyasevich
    • 1
  1. 1.Steklov Institute of MathematicsRussia

Personalised recommendations