Advertisement

Infinite Time Computable Model Theory

  • Joel David Hamkins
  • Russell Miller
  • Daniel Seabold
  • Steve Warner

Keywords

Real Point Constant Symbol Transitive Model Elementary Substructure Computable Presentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vinay Deolalikar, Joel David Hamkins, and Ralf-Dieter Schindler. P = NP ∩ co-NP for infinite time turing machines. Journal of Logic and Computation, 15(5):577-592, 2005.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Yuri L. Ershov, Sergey S. Goncharov, Anil Nerode, and Jeffrey B. Remmel, editors. Handbook of Recursive Mathematics, Volume 1: Recursive Model Theory, volume 138 of Studies in Logic and the Foundations of Mathematics. Elsevier, 1998.Google Scholar
  3. 3.
    Joel David Hamkins. Infinite time turing machines. Minds and Machines, 12(4):521-539,2002. (special issue devoted to hypercomputation).Google Scholar
  4. 4.
    Joel David Hamkins. Infinitary computability with infinite time Turing machines. In Barry S. Cooper and Benedikt Löwe, editors, New Computational Paradigms, volume 3526 of LNCS, Amsterdam, June 8-12 2005. CiE, Springer-Verlag.Google Scholar
  5. 5.
    Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J. Symbolic Logic, 65(2):567-604, 2000.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Joel David Hamkins and Andy Lewis. Post’s problem for supertasks has both positive and negative solutions. Archive for Mathematical Logic, 41(6):507-523, 2002.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Joel David Hamkins and Daniel Seabold. Infinite time Turing machines with only one tape. Mathematical Logic Quarterly, 47(2):271-287, 2001.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Joel David Hamkins and Philip Welch. P f= NP f for almost all f . Mathematical Logic Quarterly, 49(5):536-540, 2003.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Thomas Jech. Set Theory. Springer Monographs in Mathematics, 3rd edition, 2003.Google Scholar
  10. 10.
    Peter Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic, 11(3):377-397,2005.MATHCrossRefGoogle Scholar
  11. 11.
    Benedikt Löwe. Revision sequences and computers with an infinite amount of time.Logic Comput., 11(1):25-40, 2001.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Philip Welch. Eventually infinite time Turing machine degrees: Infinite time decidable reals. Journal of Symbolic Logic, 65(3):1193-1203, 2000.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Philip Welch. The lengths of infinite time Turing machine computations. Bulletin of the London Mathematical Society, 32(2):129-136, 2000.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Philip Welch. The transfinite action of 1 tape Turing machines. In Barry S. Cooper and Benedikt Löwe, editors, New Computational Paradigms, volume 3526 of LNCS, Amsterdam, June 8-12 2005. CiE, Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joel David Hamkins
    • 1
  • Russell Miller
    • 2
  • Daniel Seabold
    • 3
  • Steve Warner
    • 3
  1. 1.MathematicsThe College of Staten Island of The City University of New YorkStaten IslandUSA
  2. 2.MathematicsQueens College of The City University of New YorkNew YorkUSA
  3. 3.Department of MathematicsHofstra UniversityHempsteadUSA

Personalised recommendations