Advertisement

Computability and Numberings

  • Serikzhan Badaev
  • Sergey Goncharov

Keywords

Boolean Algebra Computable Function Apply Logic Computable Structure Peano Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, C. J.: Categoricity in hyperarithmetical degrees. Annals of Pure and Applied Logic, 34,1-14 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ash, C. J., Knight, J. F.: Pairs of computable structures. Annals of Pure and Applied Logic, 46, 211-234 (1990)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ash, C. J., Knight, J. F.: Possible degrees in computable copies. Annals of Pure and Applied Logic, 75, 215-221 (1995)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ash, C. J., Knight, J. F.: Possible degrees in computable copies II. Annals of Pure and Applied Logic, 87, 151-165 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ash, C. J., Knight, J. F.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science, Amsterdam (2000)MATHGoogle Scholar
  6. 6.
    Badaev, S. A.: On Rogers semilattices. Lecture Notes in Computer Science, 3959, 704-706(2006)MathSciNetGoogle Scholar
  7. 7.
    Badaev, S. A., Goncharov, S. S.: Theory of numberings: open problems. In: Cholak, P., Lempp, S., Lerman, M., Shore, R. (eds) Computability Theory and its Applications. Con-temporary Mathematics, 257. American Mathematical Society, Providence (2000)Google Scholar
  8. 8.
    Badaev, S. A., Goncharov, S. S.: Rogers semilattices of families of arithmetic sets. Alge-bra and Logic, 40, 283-291 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Badaev, S. A., Goncharov, S. S., Sorbi, A.: Completeness and universality of arithmeti-cal numberings. In: Cooper, S. B., Goncharov, S. S. (eds) Computability and Models. Kluwer/Plenum Publishers, New York (2003).Google Scholar
  10. 10.
    Badaev, S. A., Goncharov, S. S., Podzorov, S.Yu., Sorbi, A.: Algebraic properties of Rogers semilattices of arithmetical numberings. In: Cooper, S. B., Goncharov, S. S. (eds) Computability and Models. Kluwer/Plenum Publishers, New York (2003)Google Scholar
  11. 11.
    Badaev, S. A., Goncharov, S. S., Sorbi, A.: Isomorphism types and theories of Rogers semilattices of arithmetical numberings. In: Cooper, S. B., Goncharov, S. S. (eds) Com-putability and Models. Kluwer/Plenum Publishers, New York (2003)Google Scholar
  12. 12.
    Badaev, S. A., Goncharov, S. S., Sorbi, A.: Elementary properties of Rogers semilattices of arithmetical numberings. In: Downey, R., Ding, D., Tung, S. H., Qiu, Y. H., Yasugi, M., Wu, G. (eds) Proceedings of the 7-th and 8-th Asian Logic Conferences. World Scientific, Singapore (2003)Google Scholar
  13. 13.
    Badaev, S. A., Goncharov, S. S., Sorbi, A.: On elementary theories of Rogers semilattices. Algebra and Logic, 44, 143-147 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Badaev, S. A., Goncharov, S. S., Sorbi, A.: Isomorphis types of Rogers semilattices for the families from different levels of arithmetical hierarchy. Algebra and Logic, 45, 361-370(2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Badaev, S. A., Podzorov, S.Yu.: Minimal coverings in the Rogers semilattices of Σ n -computable numberings. Siberian Mathematical Journal, 43, 616-622 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Badaev, S. A., Talasbaeva Zh. T.: Computable numberings in the Hierarchy of Ershov. In: Goncharov, S.S., Ono, H., Downey, R. (eds) Proceedings of 9-th Asian Logic Conference. World Scientific Publishers, Singapore (2006)Google Scholar
  17. 17.
    Dzgoev, V. D.: Constructive enumerations of Boolean lattices. Algebra and Logic, 27, 395-400 (1988)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ershov, Yu.L.: Theory of Numberings. Nauka, Moscow (1977).Google Scholar
  19. 19.
    Ershov, Yu.L.: Theory of numberings. In: Griffor, E. R. (ed) Handbook of Computability Theory. North-Holland, Amsterdam (1999)Google Scholar
  20. 20.
    Feiner, L.: Hierarchies of Boolean algebras. Journal of Symbolic Logic, 35, 365-374 (1970)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Friedberg, R. M.: Three theorems on recursive enumeration. Journal of Symbolic Logic, 23,309-316 (1958)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Goncharov, S. S.: The quantity of nonautoequivalent constructivizations. Algebra and Logic, 16, 169-185 (1977)CrossRefGoogle Scholar
  23. 23.
    Goncharov, S. S.: Computable single-valued numerations. Algebra and Logic, 19, 325-356(1980)MATHCrossRefGoogle Scholar
  24. 24.
    Goncharov, S. S.: On the problem of number of non-self-equivalent constructivizations. Algebra and Logic, 19, 401-414 (1980)MATHCrossRefGoogle Scholar
  25. 25.
    Goncharov, S. S.: Countable Boolean Algebras and Decidability. Plenum, Consultants Bureau, New York (1997).MATHGoogle Scholar
  26. 26.
    Goncharov, S. S.: Computability and computable models. In: Mathematical Problems in Applied Logic II. Springer, Heidelberg (2007)Google Scholar
  27. 27.
    Goncharov, S. S., Knight, J. F.: Computable structure/non-structure theorems. Algebra and Logic, 41, 351-373 (2002)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Goncharov, S. S., Harizanov, V. S., Knight, J. F., McCoy, C., Miller, R. G., Solomon, R.: Enumerations in computable structure theory. Annals of Pure and Applied Logic, 136, 219-246 (2005)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Goncharov, S. S., Lempp, S., Solomon, D. R.: Friedberg numberings of families of n-computably enumerable sets. Algebra and Logic, 41, 81-86 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Goncharov, S. S., Nurtazin, A. T.: Constructive models of complete solvable theories. Algebra and Logic, 12, 67-77 (1973)CrossRefGoogle Scholar
  31. 31.
    Goncharov, S. S., Sorbi, A.: Generalized computable numerations and non-trivial Rogers semilattices. Algebra and Logic, 36, 359-369 (1997)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Lachlan, A. H.: On the lattice of recursively enumerable sets. Transactions of the American Mathematical Society, 130, 1-37 (1968)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Podzorov, S.Yu.: Initial segments in Rogers semilattices of Σ n -computable numberings. Algebra and Logic, 42, 121-129 (2003)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Podzorov, S.Yu.: Local structure of Rogers semilattices of Σ n -computable numberings. Algebra and Logic, 44, 82-94 (2005)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Podzorov, S.Yu.: On the definition of a Lachlan semilattice. Siberian Mathematical Jour-nal, 47, 315-323 (2006)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Rogers, H.: Gödel numberings of partial computable functions. Journal of Symbolic Logic, 23, 49-57 (1958)Google Scholar
  37. 37.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)MATHGoogle Scholar
  38. 38.
    Soare, R. I.: Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin Heidel-berg (1987)Google Scholar
  39. 39.
    Talasbaeva, Zh. T.: Positive numberings of families of sets in the Ershov hierarchy. Alge-bra and Logic, 42, 413-418 (2003)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Uspensky, V. A.: Kolmogorov and mathematical logic. Journal of Symbolic Logic, 57, 385-412 (1992)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Uspensky, V. A.: Lectures on Computable Functions. Fiz-MatGiz, Moscow (1960)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Serikzhan Badaev
    • 1
  • Sergey Goncharov
    • 2
  1. 1.Kazakh National UniversityKazakhstan
  2. 2.Institute of Mathematics of Siberian Branch of Russian Academy of SciencesRussia

Personalised recommendations