Advertisement

A Continuous Derivative for Real-Valued Functions

  • Abbas Edalat

Keywords

Banach Space Convex Subset Continuous Derivative Norm Topology Nonempty Compact Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abolfathbeigi and M. Mahmoudi. Consistency for approximating twice different functions, 2003. Manuscript in Persian, Department of Mathematical Sciences, Sharif University of Techonology, Tehran, Iran.Google Scholar
  2. 2.
    S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press, 1994.Google Scholar
  3. 3.
    F. H. Clarke. Private communications. Summer 2005.Google Scholar
  4. 4.
    F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.Google Scholar
  5. 5.
    F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth Analysis and Control Theory. Springer, 1998.Google Scholar
  6. 6.
    A. Edalat. Dynamical systems, measures and fractals via domain theory. Information and Computation, 120(1):32-48, 1995.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Edalat, M. Krznari ć , and A. Lieutier.Domain-theoretic solution of differential equations(scalar fields).In Proceedings of MFPS XIX, volume83 of Electronic Notes in Theoretical Computer Science,2003.Full paper in www.doc.ic.ac.uk/~ae/papers/scalar.ps.
  8. 8.
    A. Edalat and A. Lieutier. Foundation of a computable solid modelling. Theoretical Computer Science, 284(2):319-345, 2002.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Edalat and A. Lieutier. Domain theory and differential calculus (Functions of one variable). Mathematical Structures in Computer Science, 14(6):771-802, 2004.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Edalat, A. Lieutier, and D. Pattinson. A computational model for multivariable differential calculus. In V. Sassone, editor, Proc. FoSSaCS 2005, volume 3441, pages 505-519, 2005.MathSciNetGoogle Scholar
  11. 11.
    A. Edalat and D. Pattinson. A domain-theoretic account of {P}icard’s theorem. LMS Journal of Computation and Mathematics, 10:83-118, 2007.MATHMathSciNetGoogle Scholar
  12. 12.
    A. Edalat and D. Pattinson. Inverse and implicit functions in domain theory. In P. Panangaden, editor, Proc. 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pages 417-426, 2005.Google Scholar
  13. 13.
    A. Edalat and D. Pattinson. Denotational semantics of hybrid automata. In L. Aceto and A. Ingofsdottir, editors, Proc. FoSSaCS 2006, volume 3921, pages 231-245, 2006.MathSciNetGoogle Scholar
  14. 14.
    N. Fars. Aspects analytiques dans la mathematique de shraf al-din al-tusi. Historia Sc., 5(1),1995.Google Scholar
  15. 15.
    N. Fars. Le calcul du maximum et la ‘derive’ selon shraf al-din al-tusi. Arabic Sci. Philos., 5(2):219-237, 1995.MathSciNetGoogle Scholar
  16. 16.
    G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous Lattices and Domains. Cambridge University Press, 2003.Google Scholar
  17. 17.
    A. Grzegorczyk. Computable functionals. Fund. Math., 42:168-202, 1955.MATHMathSciNetGoogle Scholar
  18. 18.
    A. Grzegorczyk. On the definition of computable real continuous functions. Fund. Math., 44:61-71, 1957.MATHMathSciNetGoogle Scholar
  19. 19.
    J. P. Hogendijk. Shraf al-din al-Tusi on the number of positive roots of cubic equations. Fund. Math., 16(1):69-85, 1989.MATHMathSciNetGoogle Scholar
  20. 20.
    K. Lau and C. Weil. Differentiability via directional derivatives. Proceedings of American Mathematical Society, 70(1):11-17, 1978.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag, 1988.Google Scholar
  22. 22.
    D. S. Scott. Outline of a mathematical theory of computation. In 4th Annual Princeton Conference on Information Sciences and Systems, pages 169-176, 1970.Google Scholar
  23. 23.
    M. B. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, chapter 5. Oxford University Press, 1992.Google Scholar
  24. 24.
    A. Turing. On computable numbers with an application to the Entscheidungsproblem. Proc. London Mathematical Soc., 42:230-265, 1936.MATHCrossRefGoogle Scholar
  25. 25.
    A. Turing. On computable numbers with an application to the Entscheidungsproblem. Proc. London Mathematical Soc., 43:544-546, 1937.MATHCrossRefGoogle Scholar
  26. 26.
    K. Weihrauch. Computable Analysis (An Introduction). Springer, 2000.Google Scholar
  27. 27.
    S. Yamamuro. Differential calculus in Topological Linear Spaces, volume 374 of Lecture Notes in Mathematics. Springer-Verlag, 1970.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Abbas Edalat
    • 1
  1. 1.Department of ComputingImperial College LondonUK

Personalised recommendations