Advertisement

From Cells to (Silicon) Computers, and Back

  • Gheorghe Păun

Although the whole history of computer science is marked by events related to and inspired from “computations” taking place in living cells and organisms (human being included), in the last decades, this became a mainstream research direction, with important and well-established areas, such as evolutionary computing and neural computing, and with exciting new areas, such as DNA and membrane (cellular) computing. All these have both consequences on the efficiency of using standard computers, hopefully leading also to new types of hardware, and—maybe more importantly—on the very understanding of the notion of computing and, at the edge of science towards science fiction. Topics of this kind will be touched in the paper, mainly in relation with DNA and membrane computing.

Keywords

Computer Science Turing Machine Regular Language Natural Computing Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Adleman: Molecular computation of solutions to combinatorial problems. Science, 226(Nov. 1994), 1021-1024.CrossRefGoogle Scholar
  2. 2.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002.Google Scholar
  3. 3.
    A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan: Communicative P systems with minimal cooperation. In Membrane Computing. International Workshop WMC5, Milan, Italy, 2004. Revised Papers (G. Mauri, Gh. P ăun, M.J. Pérez-Jiménez, G. Rozenberg, C. Zandron, eds.), Lecture Notes in Computer Science, 3365, Springer, Berlin, 2005, 162-178.Google Scholar
  4. 4.
    J.A. Anderson: An Introduction to Neural Networks. The MIT Press, Cambridge, MA, 1996.Google Scholar
  5. 5.
    Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro: Programmable and autonomous computing machine made of biomolecules. Nature, 414 (Nov. 2001), 430-434.CrossRefGoogle Scholar
  6. 6.
    Y. Benenson, E. Shapiro, B. Gill, U. Ben-Dor, R. Adar: Molecular computer. A ‘smart drug’ in a test tube. Proc. of Tenth DNA Computing Conference, Milano, 2004 (C. Ferretti, G. Mauri, C. Zandron, eds.), Univ. of Milano-Bicocca, 2004, 49 (abstract of invited talk).Google Scholar
  7. 7.
    D. Bray: Protein molecules as computational elements in living cells. Nature, 376 (July 1995),307-312.CrossRefGoogle Scholar
  8. 8.
    R. Brooks: The relationship between matter and life. Nature, 409 (Jan. 2001), 409-411.CrossRefGoogle Scholar
  9. 9.
    C. Calude, Gh. P ăun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175-194.CrossRefGoogle Scholar
  10. 10.
    J. Mc Carthy: Problems and projection in CS for the next 49 years. Journal of the ACM, 50,1 (2003),73-79.CrossRefGoogle Scholar
  11. 11.
    J.L. Casti. Computing the uncomputable, The New Scientist, 154/2082, 17 (May 1997), 34.Google Scholar
  12. 12.
    S. Cook: The importance of the P versus NP question. Journal of the ACM, 50, 1 (2003),27-29.CrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Ciobanu, Gh. P ăun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Computing.Springer, Berlin, 2006.Google Scholar
  14. 14.
    M. Conrad: The price of programmability. In The Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Kammerer and Unverzagt, Hamburg, 1988, 285-307.Google Scholar
  15. 15.
    B.J. Copeland: Hypercomputation. Minds and Machines, 12, 4 (2002), 461-502.MATHCrossRefGoogle Scholar
  16. 16.
    B.J. Copeland, D. Proudfoot: Alan Turing’s forgotten ideas in computer science. Scientific American, 280 (April 1999), 77-81.CrossRefGoogle Scholar
  17. 17.
    E.W. Dijkstra: The end of computer science? Communications of the ACM, 44, 3 (2000), 92.CrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living Cells. Gene Assembly in Ciliates. Springer, Berlin, 2004.MATHGoogle Scholar
  19. 19.
    A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. Springer, Berlin, 2003.MATHGoogle Scholar
  20. 20.
    G. Franco, C. Giabulli, C. Laudana, V. Manca: DNA extraction by cross pairing PCR. Proc. of Tenth DNA Computing Conference, Milano, 2004 (C. Ferretti, G. Mauri, C. Zan-dron, eds.), Univ. of Milano-Bicocca, 2004, 193-201.Google Scholar
  21. 21.
    R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Sci., 330, 2 (2005), 251-266.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Gandy: Church’s thesis and principles for mechanisms. In The Kleene Symposium (J. Barwise , eds.), North-Holland, Amsterdam, 1980, 123-148.CrossRefGoogle Scholar
  23. 23.
    M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.MATHGoogle Scholar
  24. 24.
    M. Gross: Molecular computation. Chapter 2 of Non-Standard Computation (T. Gramss, S. Bornholdt, M. Gross, M. Mitchel, Th. Pellizzari, eds.), Wiley-VCH, Weinheim, 1998.Google Scholar
  25. 25.
    S.R. Hameroff, J.D. Dayhoff, R. Lahoz-Beltra, A.V. Samsonovich, S. Rasmussen: Models for molecular computation: Conformational automata in the cytoskeleton. Computer, 25 (Nov. 1992), 30-39.CrossRefGoogle Scholar
  26. 26.
    T. Head: Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology, 49 (1987), 737-759.MATHMathSciNetGoogle Scholar
  27. 27.
    J. Hartmanis: About the nature of computer science. Bulletin of the EATCS, 53 (June 1994),170-190.MATHGoogle Scholar
  28. 28.
    J. Hartmanis: On the weight of computation. Bulletin of the EATCS, 55 (Febr. 1995), 136-138.MATHGoogle Scholar
  29. 29.
    J. Hoffmeyer: Surfaces inside surfaces. On the origin of agency and life. Cybernetics and Human Knowing, 5, 1 (1998), 33-42.Google Scholar
  30. 30.
    J. Hoffmeyer: Semiosis and living membranes. First Seminário Avançado de Comunicação e Semiótica. Biossemiótica e Semiótica Cognitiva, São Paolo, Brasil, 1998, 9-19.Google Scholar
  31. 31.
    J. Horáková, J. Kelemen: Cˇ apek, Turing, von Neumann, and the 20th century evolution of the concept of machine. In Proceedings of the International Conference in Memoriam John von Neumann, Budapest Polytechnic, 2003, 121-135.Google Scholar
  32. 32.
    J. Hromkovic: Communication Complexity and Parallel Computing. Springer, Berlin, 1997.MATHGoogle Scholar
  33. 33.
    S. Ji: The cell as the smallest DNA-based molecular computer. BioSystems, 52 (1999), 123-133.CrossRefGoogle Scholar
  34. 34.
    S. Kauffman: At Home in the Universe. Oxford Univ. Press, New York, 1995.Google Scholar
  35. 35.
    J. Kelemen: Bodouci Altamira (The New Altamira). Votobia, Olomouc, 1996.Google Scholar
  36. 36.
    J. Kelemen: Kybergolem (Cybergolem). Votobia, Olomouc, 2001.Google Scholar
  37. 37.
    H. Kitano: Systems biology: A brief overview. Science, 295 (March 2002), 1662-1664.CrossRefGoogle Scholar
  38. 38.
    H. Kitano: Computational systems biology. Nature, 420 (Nov. 2002), 206-210.CrossRefGoogle Scholar
  39. 39.
    V. Kreinovich, L. Longprè: Fast quantum algorithms for handling probabilistic and interval uncertainty. Math. Logic Quart., 50 (2004), 405-416.MATHCrossRefGoogle Scholar
  40. 40.
    W.R. Loewenstein: The Touchstone of Life. Molecular Information, Cell Communication, and the Foundations of Life. Oxford University Press, New York, Oxford, 1999.Google Scholar
  41. 41.
    S. Marcus: Bridging P systems and genomics: A preliminary approach. In Membrane Computing. International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania, Re-vised Papers (Gh. P ăun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in Computer Science, 2597, Springer, Berlin, 2003, 371-376.Google Scholar
  42. 42.
    W. Mass: Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10, 9 (1997), 1659-1671.CrossRefGoogle Scholar
  43. 43.
    M.D. Mesarovi ć : System theory and biology - view of a theoretician. In System Theory and Biology (M.D. Mesarovi ć , ed.), Springer, New York, 1968, 59-87.Google Scholar
  44. 44.
    T.Y. Nishida: An application of P system: A new algorithm for NP-complete optimization problems. In Proceedings of the 8th World Multi-Conference on Systems, Cybernetics and Informatics (N. Callaos et al, eds.), vol. V, 2004, 109-112.Google Scholar
  45. 45.
    T. Ord: Hypercomputation: Computing More Than the Turing Machine. Honours Thesis, Department of Computer Science, University of Melbourne, 2003.Google Scholar
  46. 46.
    C.H. Papadimitriou: Computational Complexity. Addison-Wesley, Reading, MA., 1994.MATHGoogle Scholar
  47. 47.
    A. P ăun, Gh. P ăun: The power of communication: P systems with symport/antiport. New Generation Computing, 20, 3 (2002), 295-306.CrossRefGoogle Scholar
  48. 48.
    Gh. P ăun: On the splicing operation. Discrete Appl. Math., 70 (1996), 57-79Google Scholar
  49. 49.
    Gh. P ăun: Computing with membranes. Journal of Computer and System Sciences, 61, 1 (2000),108-143 (and Turku Center for Computer Science-TUCS Report 208, November 1998, www.tucs.fi).
  50. 50.
    Gh. P ăun: Membrane Computing: An Introduction. Springer, Berlin, 2002.Google Scholar
  51. 51.
    Gh. P ăun, R. P ăun: Membrane computing and economics: Numerical P systems. Submitted, 2005 (available at [65]).Google Scholar
  52. 52.
    Gh. P ăun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing Paradigms. Springer, Berlin, 1998.Google Scholar
  53. 53.
    R. Penrose: The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics. Oxford University Press, Oxford, 1989.Google Scholar
  54. 54.
    J.H. Reif, T.H. LaBean, S. Sahu, H. Yan, P. Yin: Design, simulation, and experimental demonstration of self-assembled DNA nanostructures and motors. Proceedings of the Workshop on Unconventional Programming Paradigms, UPP04, Le Mont Saint-Michel, September 2004, Springer, Berlin, 2005.Google Scholar
  55. 55.
    G. Rozenberg, A. Salomaa: Watson-Crick complementarity, universal computations, and genetic engineering. Techn. Report 96-28, Department of Computer Science, Leiden Univ., Oct. 1996.Google Scholar
  56. 56.
    P. Sosik: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing, 2, 3 (2003), 287-298.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    C. Teuscher, ed.: Alan Turing. Life and Legacy of a Great Thinker. Springer, Berlin, 2003.Google Scholar
  58. 58.
    C. Teuscher, E. Sanchez: A revival of Turing’s forgotten connectionist ideas: exploring unorganized machines. Proc. Connectionist Models of Learning, Development and Evo-lution, Liege, Belgium, 2000 (R.M. French, J.J. Sougne, eds.), Springer-Verlag, London, 2001,153-162.Google Scholar
  59. 59.
    F. Tipler: The Physics of Immortality. Doubleday, New York, 1994.Google Scholar
  60. 60.
    T. Toffoli: Nothing makes sense in computing except in the light of evolution. Int. J. of Unconventional Computing, 1 (2005), 3-29.Google Scholar
  61. 61.
    M. Tomita: Whole-cell simulation: A grand challenge of the 21st century. Trends in Biotechnology, 19 (2001), 205-210.CrossRefGoogle Scholar
  62. 62.
    A.M. Turing: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Ser. 2, 42 (1936), 230-265; a correc tion, 43 (1936), 544-546.Google Scholar
  63. 63.
    V. Vinge: Technological singularity. VISION-21 Symposium, March 1993 (available at http://www.frc.ri.cmu.edu/ hpm/book98/com.chl/vinge.singularity.html.
  64. 64.
    O. Wolkenhauer: Systems biology: The reincarnation of systems theory applied in biol ogy? Briefings in Bioinformatics, 2, 3 (2001), 258-270.CrossRefGoogle Scholar
  65. 65.
    The Web Page of Membrane Computing: http://psystems.disco.unimib.it

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gheorghe Păun
    • 1
  1. 1.Institute of Mathematics of the Romanian AcademyRomania

Personalised recommendations