Skip to main content

Toward Consistently Behaving Deformable Models For Improved Automation In Image Segmentation

  • Chapter
Deformable Models

Deformable models are a powerful approach to medical image segmentation. However, currently the behavior of a deformable model is highly dependent on its initialization and parameter settings. This is an obstacle to robust automatic or near-automatic segmentation. A generic approach to reducing this dependency is introduced in the present chapter based on topographic distance transforms from manually or automatically placed markers. This approach utilizes object and background differentiation through watershed theories. The implementation is based on efficient numerical methods such as the Fast Marching method and non-iterative reconstruction-by-erosion. Further extension into a multi-region coupled segmentation approach is discussed. Validation experiments are presented to demonstrate the capabilities of this approach. A preliminary application in pediatric dosimetry research is described. It is believed that the more consistent behavior will enable a higher degree of automation for segmentation employing deformable models and is particularly suited for applications that involve segmentation-based construction of organ models from image databases, especially in situations where the markers can be placed automatically based on a priori knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass M, Witkin M, Terzopoulos D. 1987. Snakes: active contour models. Int J Comput Vision 1:321-331.

    Article  Google Scholar 

  2. McInerney T, Terzopoulos D. 1995. Topologically adaptable snakes. In Proceedings of the fifth international conference on computer vision, pp. 840-845. Washington, DC: IEEE Computer Society.

    Chapter  Google Scholar 

  3. Malladi R, Sethian JA, Vemuri BC. 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17(2):158-175.

    Article  Google Scholar 

  4. Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22(1):61-79.

    Article  MATH  Google Scholar 

  5. Cootes T, Hill A, Taylor C, Haslam J. 1994. The use of active shape models for locating structures in medical images. Image Vision Comput 12(6):355-366.

    Article  Google Scholar 

  6. Cootes T, Taylor C. 2001. Statistical models of appearance for medical image analysis and com-puter vision. In Proc SPIE Med Imaging 4322:236-248.

    Google Scholar 

  7. Amini AA, Weymouth TE, Jain RC. 1990. Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Machine Intell 12:855-867.

    Article  Google Scholar 

  8. Nipper JC, Williams JL, Bolch WE. 2002. Creation of two tomographic voxel models of paediatric patients in the first year of life. Phys Med Biol 47:3143-3164.

    Article  Google Scholar 

  9. Cohen L, Cohen I. 1993. Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Trans Pattern Anal Machine Intell 15(11):1131-1147.

    Article  Google Scholar 

  10. Paragios N, Mellina-Gottardo O, Ramesh V. 2004. Gradient vector flow fast geometric active contours. IEEE Trans Pattern Anal Machine Intell 26(3):402-417.

    Article  Google Scholar 

  11. Ho S, Bullitt E, Gerig G. 2002. Level set evolution with region competition: automatic 3D segmentation of brain tumors. In R. Kasturi, D. Laurendeau, and C. Suen, editors, Proceedings of the 16th international conference on pattern recognition, pp. 532-535. Washington, DC: IEEE Computer Society.

    Google Scholar 

  12. Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.

    Article  MATH  MathSciNet  Google Scholar 

  13. Xu C, Prince JL. 2000. Gradient vector flow deformable models. In Handbook of Medical Imaging, pp. 159-169. Ed I Bankman. New York: Academic Press.

    Chapter  Google Scholar 

  14. Chen T, Metaxas D. 2002. Integration of Gibbs prior models and deformable models for 3D medical image segmentation. In Proceedings of the 16th international conference on pattern recognition, Vol. 1, pp. 719-722. Washington, DC: IEEE Computer Society.

    Google Scholar 

  15. Metaxas D, Chen T. 2004. A hybrid 3D segmentation framework. IEEE Int Symp Biomed Imaging 1:13-16.

    Google Scholar 

  16. Parke J, Keller J. 2001. Snakes on the watershed. IEEE Trans Pattern Anal Machine Intell 23(10):1201-1205.

    Article  Google Scholar 

  17. Zhu SC, Yuille AL. 1996. Region competition: Unifying snakes, region growing, and bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Machine Intell 18(9):884-900.

    Article  Google Scholar 

  18. Thodberg HH, Rosholm A. 2003. Application of the active shape model in a commercial medical device for bone densitometry. Image Vision Comput 21:1155-1161.

    Article  Google Scholar 

  19. Nguyen HT, Worring MI, van den Boomgaard R. 2003. Watersnakes: energy-driven watershed segmentation. IEEE Trans Pattern Anal Machine Intell 25(3):330-342.

    Article  Google Scholar 

  20. Tek H, Kimia B. 1997. Volumetric segmentation of images by three-dimensional bubbles. Comput Vision Image Understand 65(2):246-258.

    Article  Google Scholar 

  21. Najman L, Schmitt M. 1994. Watershed of a continuous function. Signal Process 38:99-112.

    Article  Google Scholar 

  22. Meyer F. 1994. Topographic distance and watershed lines. Signal Process 38:113-125.

    Article  MATH  Google Scholar 

  23. Roerdink JBTM, Meijster A. 2001. The watershed transform: definitions, algorithms and paral- lelization strategies. Fundam Inform 41(1-2):187-228.

    MathSciNet  Google Scholar 

  24. Maragos P, Butt MA. 1998. Advances in differential morphology: image segmentation via eikonal PDE and curve evolution and reconstruction via constrained dilation flow. In Mathematical mor-phology and its applications to image and signal processing, pp. 167-174. Ed HJAM Heijmans, JBTM Roerdink. Amsterdam: Kluwer Academic.

    Google Scholar 

  25. Meyer F. 2001. An overview of morphological segmentation. Int J Pattern Recognit Artif Intell 15(7):1089-1118.

    Article  Google Scholar 

  26. Bueno G, Mussea O, Heitza F, Armspach JP. 2001. Three-dimensional segmentation of anatomical structures in MR images on large data bases. Magn Reson Imaging 19(1):73-88.

    Article  Google Scholar 

  27. Meyer F, Maragos P. 1999. Multiscale morphological segmentations based on watershed, flood-ing, and eikonal PDE. Scale-space theories in computer vision, pp. 351-362. Ed M Nielsen, P Johansen, OF Olsen, J Weickert. Berlin: Springer.

    Google Scholar 

  28. Beucher S. 2001. Geodesic reconstruction, saddle zones and hierarchical segmentation. Image Anal Stereol 20:137-141.

    MATH  Google Scholar 

  29. Soille P. 2003. Morphological image analysis: principles and applications, 2nd ed. Berlin: Springer.

    MATH  Google Scholar 

  30. Vincent L. 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2(2):176-201.

    Article  Google Scholar 

  31. Maragos P, Butt MA, Pessoa LFC. 1998. Two frontiers in morphological image analysis: dif-ferential evolution models and hybrid morphological/linear neural networks. In Proceedings of the international symposium on computer graphics, image processing and vision, Vol. 11, pp. 10-17. http://cvsp.cs.ntua.gr/publications/confr/MaragosButtPesoa DifMorfMRLNN SIB-GRAPI1998.pdf.

  32. Adalsteinsson D, Sethian JA. 1995. A fast level set method for propagating interfaces. J Comput Phys 118:269-277.

    Article  MATH  MathSciNet  Google Scholar 

  33. Sethian JA. 1996. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93(4):1591-1595.

    Article  MATH  MathSciNet  Google Scholar 

  34. Sethian JA. 1999. Level set methods and fast marching methods: evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge UP.

    MATH  Google Scholar 

  35. Vincent L, Soille P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulation. IEEE Trans Pattern Anal Machine Intell 13(6):583-598.

    Article  Google Scholar 

  36. Robinson K, Whelan PF. 2004. Efficient morphological reconstruction: a downhill filter. Pattern Recognit Lett 25(15):1759-1767.

    Article  Google Scholar 

  37. Marr D, Hildreth E. 1980. Theory of edge detection. Proc Roy Soc London B207:187-217.

    Google Scholar 

  38. Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, and Westin C-F. 1999. Co-dimension 2 geodesic active contours for MRA segmentation. In Proceedings of the international conference on information processing in medical imaging, pp. 126-133. Washington, DC: IEEE Computer Society.

    Chapter  Google Scholar 

  39. Warfield SK, Kaus M, Jolesz FA, Kikinis R. 2000. Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43-55.

    Article  Google Scholar 

  40. Yushkevich PA, Piven J, Cody H, Ho S, Gee JC, Gerig G. 2005. User-guided level set segmentation of anatomical structures with ITK-SNAP. Insight J. To appear.

    Google Scholar 

  41. Kaus M, Warfield SK, Nabavi A, Jolesz FA, Black PM, Kikinis R. 2001. Automated segmentation of MRI of brain tumors. Radiology 218(2):586-591.

    Google Scholar 

  42. Brenner DJ, Elliston CD, Hall EJ. 2001. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176:289-296.

    Google Scholar 

  43. Curry TS, Dowdey JE, Murry RC. 1990. Christensen’s physics of diagnostic radiology. Philadel- phia: Lea & Febiger.

    Google Scholar 

  44. McLean D, Barclay L, Li R, Ourselin S. 2006. Estimation of paediatric tissue characteristics from CT image analysis. In Proceeding of the 6th international topical meeting on industrial radiation and radioisotope measurement applications. Lecture notes in computer science, Vol. 3708. Ed J Blanc-Talon, W Philips, DC Popescu, P Scheunders. Berlin: Springer. To appear.

    Google Scholar 

  45. Zhao H, Chan T, Merriman B, Osher S. 1996. A variational level set approach to multiphase motion. J Comput Phys 127(1):179-195.

    Article  MATH  MathSciNet  Google Scholar 

  46. Paragios N, Deriche R. 2000. Coupled geodesic active regions for image segmentation: a level set approach. In Proceedings of the sixth European conference on computer vision, Part 2. Lecture notes in computer science, Vol. 1843, pp. 224-240. Berlin: Springer.

    Google Scholar 

  47. Vese LA, Chan TF. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vision 50(3):271-293.

    Article  MATH  Google Scholar 

  48. Yezzi AJ, Tsai A, Willsky A. 2002. A fully global approach to image segmentation via coupled curve evolution equations. J Vis Commun Image Represent 50(13):195-216.

    Article  Google Scholar 

  49. Li S, Fevens T, Krzyzak A, Jin C, Li S. 2005. Toward automatic computer aided dental x-ray analysis using level set method. In Proceedings of the international confernece on medical image computing and computer assisted intervention, pp. pp. 670-678. Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, R., Ourselin, S. (2007). Toward Consistently Behaving Deformable Models For Improved Automation In Image Segmentation. In: Deformable Models. Topics in Biomedical Engineering. International Book Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68413-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68413-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-31201-9

  • Online ISBN: 978-0-387-68413-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics