Toward Consistently Behaving Deformable Models For Improved Automation In Image Segmentation

  • Rongxin Li
  • Sébastien Ourselin
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Deformable models are a powerful approach to medical image segmentation. However, currently the behavior of a deformable model is highly dependent on its initialization and parameter settings. This is an obstacle to robust automatic or near-automatic segmentation. A generic approach to reducing this dependency is introduced in the present chapter based on topographic distance transforms from manually or automatically placed markers. This approach utilizes object and background differentiation through watershed theories. The implementation is based on efficient numerical methods such as the Fast Marching method and non-iterative reconstruction-by-erosion. Further extension into a multi-region coupled segmentation approach is discussed. Validation experiments are presented to demonstrate the capabilities of this approach. A preliminary application in pediatric dosimetry research is described. It is believed that the more consistent behavior will enable a higher degree of automation for segmentation employing deformable models and is particularly suited for applications that involve segmentation-based construction of organ models from image databases, especially in situations where the markers can be placed automatically based on a priori knowledge.


Manual Segmentation Deformable Model Geodesic Active Contour Fast Marching Method Background Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kass M, Witkin M, Terzopoulos D. 1987. Snakes: active contour models. Int J Comput Vision 1:321-331.CrossRefGoogle Scholar
  2. 2.
    McInerney T, Terzopoulos D. 1995. Topologically adaptable snakes. In Proceedings of the fifth international conference on computer vision, pp. 840-845. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  3. 3.
    Malladi R, Sethian JA, Vemuri BC. 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17(2):158-175.CrossRefGoogle Scholar
  4. 4.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22(1):61-79.MATHCrossRefGoogle Scholar
  5. 5.
    Cootes T, Hill A, Taylor C, Haslam J. 1994. The use of active shape models for locating structures in medical images. Image Vision Comput 12(6):355-366.CrossRefGoogle Scholar
  6. 6.
    Cootes T, Taylor C. 2001. Statistical models of appearance for medical image analysis and com-puter vision. In Proc SPIE Med Imaging 4322:236-248.Google Scholar
  7. 7.
    Amini AA, Weymouth TE, Jain RC. 1990. Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Machine Intell 12:855-867.CrossRefGoogle Scholar
  8. 8.
    Nipper JC, Williams JL, Bolch WE. 2002. Creation of two tomographic voxel models of paediatric patients in the first year of life. Phys Med Biol 47:3143-3164.CrossRefGoogle Scholar
  9. 9.
    Cohen L, Cohen I. 1993. Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Trans Pattern Anal Machine Intell 15(11):1131-1147.CrossRefGoogle Scholar
  10. 10.
    Paragios N, Mellina-Gottardo O, Ramesh V. 2004. Gradient vector flow fast geometric active contours. IEEE Trans Pattern Anal Machine Intell 26(3):402-417.CrossRefGoogle Scholar
  11. 11.
    Ho S, Bullitt E, Gerig G. 2002. Level set evolution with region competition: automatic 3D segmentation of brain tumors. In R. Kasturi, D. Laurendeau, and C. Suen, editors, Proceedings of the 16th international conference on pattern recognition, pp. 532-535. Washington, DC: IEEE Computer Society.Google Scholar
  12. 12.
    Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Xu C, Prince JL. 2000. Gradient vector flow deformable models. In Handbook of Medical Imaging, pp. 159-169. Ed I Bankman. New York: Academic Press.CrossRefGoogle Scholar
  14. 14.
    Chen T, Metaxas D. 2002. Integration of Gibbs prior models and deformable models for 3D medical image segmentation. In Proceedings of the 16th international conference on pattern recognition, Vol. 1, pp. 719-722. Washington, DC: IEEE Computer Society.Google Scholar
  15. 15.
    Metaxas D, Chen T. 2004. A hybrid 3D segmentation framework. IEEE Int Symp Biomed Imaging 1:13-16.Google Scholar
  16. 16.
    Parke J, Keller J. 2001. Snakes on the watershed. IEEE Trans Pattern Anal Machine Intell 23(10):1201-1205.CrossRefGoogle Scholar
  17. 17.
    Zhu SC, Yuille AL. 1996. Region competition: Unifying snakes, region growing, and bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Machine Intell 18(9):884-900.CrossRefGoogle Scholar
  18. 18.
    Thodberg HH, Rosholm A. 2003. Application of the active shape model in a commercial medical device for bone densitometry. Image Vision Comput 21:1155-1161.CrossRefGoogle Scholar
  19. 19.
    Nguyen HT, Worring MI, van den Boomgaard R. 2003. Watersnakes: energy-driven watershed segmentation. IEEE Trans Pattern Anal Machine Intell 25(3):330-342.CrossRefGoogle Scholar
  20. 20.
    Tek H, Kimia B. 1997. Volumetric segmentation of images by three-dimensional bubbles. Comput Vision Image Understand 65(2):246-258.CrossRefGoogle Scholar
  21. 21.
    Najman L, Schmitt M. 1994. Watershed of a continuous function. Signal Process 38:99-112.CrossRefGoogle Scholar
  22. 22.
    Meyer F. 1994. Topographic distance and watershed lines. Signal Process 38:113-125.MATHCrossRefGoogle Scholar
  23. 23.
    Roerdink JBTM, Meijster A. 2001. The watershed transform: definitions, algorithms and paral- lelization strategies. Fundam Inform 41(1-2):187-228.MathSciNetGoogle Scholar
  24. 24.
    Maragos P, Butt MA. 1998. Advances in differential morphology: image segmentation via eikonal PDE and curve evolution and reconstruction via constrained dilation flow. In Mathematical mor-phology and its applications to image and signal processing, pp. 167-174. Ed HJAM Heijmans, JBTM Roerdink. Amsterdam: Kluwer Academic.Google Scholar
  25. 25.
    Meyer F. 2001. An overview of morphological segmentation. Int J Pattern Recognit Artif Intell 15(7):1089-1118.CrossRefGoogle Scholar
  26. 26.
    Bueno G, Mussea O, Heitza F, Armspach JP. 2001. Three-dimensional segmentation of anatomical structures in MR images on large data bases. Magn Reson Imaging 19(1):73-88.CrossRefGoogle Scholar
  27. 27.
    Meyer F, Maragos P. 1999. Multiscale morphological segmentations based on watershed, flood-ing, and eikonal PDE. Scale-space theories in computer vision, pp. 351-362. Ed M Nielsen, P Johansen, OF Olsen, J Weickert. Berlin: Springer.Google Scholar
  28. 28.
    Beucher S. 2001. Geodesic reconstruction, saddle zones and hierarchical segmentation. Image Anal Stereol 20:137-141.MATHGoogle Scholar
  29. 29.
    Soille P. 2003. Morphological image analysis: principles and applications, 2nd ed. Berlin: Springer.MATHGoogle Scholar
  30. 30.
    Vincent L. 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2(2):176-201.CrossRefGoogle Scholar
  31. 31.
    Maragos P, Butt MA, Pessoa LFC. 1998. Two frontiers in morphological image analysis: dif-ferential evolution models and hybrid morphological/linear neural networks. In Proceedings of the international symposium on computer graphics, image processing and vision, Vol. 11, pp. 10-17. DifMorfMRLNN SIB-GRAPI1998.pdf.
  32. 32.
    Adalsteinsson D, Sethian JA. 1995. A fast level set method for propagating interfaces. J Comput Phys 118:269-277.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Sethian JA. 1996. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93(4):1591-1595.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sethian JA. 1999. Level set methods and fast marching methods: evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge UP.MATHGoogle Scholar
  35. 35.
    Vincent L, Soille P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulation. IEEE Trans Pattern Anal Machine Intell 13(6):583-598.CrossRefGoogle Scholar
  36. 36.
    Robinson K, Whelan PF. 2004. Efficient morphological reconstruction: a downhill filter. Pattern Recognit Lett 25(15):1759-1767.CrossRefGoogle Scholar
  37. 37.
    Marr D, Hildreth E. 1980. Theory of edge detection. Proc Roy Soc London B207:187-217.Google Scholar
  38. 38.
    Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, and Westin C-F. 1999. Co-dimension 2 geodesic active contours for MRA segmentation. In Proceedings of the international conference on information processing in medical imaging, pp. 126-133. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  39. 39.
    Warfield SK, Kaus M, Jolesz FA, Kikinis R. 2000. Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43-55.CrossRefGoogle Scholar
  40. 40.
    Yushkevich PA, Piven J, Cody H, Ho S, Gee JC, Gerig G. 2005. User-guided level set segmentation of anatomical structures with ITK-SNAP. Insight J. To appear.Google Scholar
  41. 41.
    Kaus M, Warfield SK, Nabavi A, Jolesz FA, Black PM, Kikinis R. 2001. Automated segmentation of MRI of brain tumors. Radiology 218(2):586-591.Google Scholar
  42. 42.
    Brenner DJ, Elliston CD, Hall EJ. 2001. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176:289-296.Google Scholar
  43. 43.
    Curry TS, Dowdey JE, Murry RC. 1990. Christensen’s physics of diagnostic radiology. Philadel- phia: Lea & Febiger.Google Scholar
  44. 44.
    McLean D, Barclay L, Li R, Ourselin S. 2006. Estimation of paediatric tissue characteristics from CT image analysis. In Proceeding of the 6th international topical meeting on industrial radiation and radioisotope measurement applications. Lecture notes in computer science, Vol. 3708. Ed J Blanc-Talon, W Philips, DC Popescu, P Scheunders. Berlin: Springer. To appear.Google Scholar
  45. 45.
    Zhao H, Chan T, Merriman B, Osher S. 1996. A variational level set approach to multiphase motion. J Comput Phys 127(1):179-195.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Paragios N, Deriche R. 2000. Coupled geodesic active regions for image segmentation: a level set approach. In Proceedings of the sixth European conference on computer vision, Part 2. Lecture notes in computer science, Vol. 1843, pp. 224-240. Berlin: Springer.Google Scholar
  47. 47.
    Vese LA, Chan TF. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vision 50(3):271-293.MATHCrossRefGoogle Scholar
  48. 48.
    Yezzi AJ, Tsai A, Willsky A. 2002. A fully global approach to image segmentation via coupled curve evolution equations. J Vis Commun Image Represent 50(13):195-216.CrossRefGoogle Scholar
  49. 49.
    Li S, Fevens T, Krzyzak A, Jin C, Li S. 2005. Toward automatic computer aided dental x-ray analysis using level set method. In Proceedings of the international confernece on medical image computing and computer assisted intervention, pp. pp. 670-678. Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rongxin Li
    • 1
  • Sébastien Ourselin
    • 1
  1. 1.BioMedIA Lab Autonomous Systems LaboratoryCSIRO ICT CentreMarsfieldAustralia

Personalised recommendations