Level Set Formulation For Dual Snake Models

  • Gilson A. Giraldi
  • Paulo S. S. Rodrigues
  • Rodrigo L. S. Silva
  • Antonio L. ApolinárioJr.
  • Jasjit S. Suri
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Dual snake models are powerful techniques for boundary extraction and segmentation of 2D images. In these methods one contour contracts from outside the target and another one expands from inside as a balanced technique with the ability to reject local minima. Such approaches have been proposed in the context of parametric snakes and extended for topologically adaptable snake models through the Dual-T-Snakes. In this chapter we present an implicit formulation for dual snakes based on the level set approach. The level set method consists of embedding the snake as the zero level set of a higher-dimensional function and to solve the corresponding equation of motion. The key idea of our work is to view the inner/outer contours as a level set of a suitable embedding function. The mathematical background of the method is explained and its utility for segmentation of cell images discussed in the experimental results. Theoretical aspects are considered and comparisons with parametric dual models presented.


Active Contour Deformable Model Active Contour Model Gradient Vector Flow Medical Imaging Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kass M, Witkin A, Terzopoulos D. 1988. Snakes: active contour models. Int J Comput Vision 1(4):321-331.CrossRefGoogle Scholar
  2. 2.
    McInerney T, Terzopoulos D. 1996. Deformable models in medical image analysis: a survey. Med Image Anal 1(2): 91-108.CrossRefGoogle Scholar
  3. 3.
    Cohen LD, Cohen I. 1993. Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Trans Pattern Anal Machine Intell 15(11): 1131-1147.CrossRefGoogle Scholar
  4. 4.
    Niessen WJ, Haar Romery BM, Viergever MA. 1998. Geodesic deformable models for medical image analysis. IEEE Trans Med Imaging 17(4):634-641.CrossRefGoogle Scholar
  5. 5.
    Sapiro G. 1997. Color snakes. Comput Vision Image Understand 68(2):247-253.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Black A, Yuille A, eds. 1993. Active vision. Cambridge: MIT Press.Google Scholar
  7. 7.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22(1):61-79.MATHCrossRefGoogle Scholar
  8. 8.
    Malladi R, Sethian JA, Vemuri BC. 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17(2):158-175.CrossRefGoogle Scholar
  9. 9.
    McInerney T, Terzopoulos D. 1999. Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840-850.CrossRefGoogle Scholar
  10. 10.
    Giraldi GA, Oliveira AF. 1999. Convexity analysis of snake models based on hamiltonian formu-lation. Technical report, Universidade Federal do Rio de Janeiro, Departamental Engenharia de Sistemas e Computa ç ão, http://www.arxiv.org/abs/cs.CV/0504031.
  11. 11.
    Leymarie F, Levine MD. 1993. Tracking deformable objects in the plane using and active contour model. IEEE Trans Pattern Anal Machine Intell 15(6):617-634.CrossRefGoogle Scholar
  12. 12.
    Amini AA, Weymouth TE, Jain RC. 1990. Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Machine Intell 12(9):855-867.CrossRefGoogle Scholar
  13. 13.
    Giraldi GA,Vasconcelos N, Strauss E, OliveiraAF. 2001. Dual and topologically adaptable snakes and initialization of deformable models. Technical report, National Laboratory for Scientific Computation, Petropolis, Brazil, http://www.lncc.br/proj-pesq/relpesq-01.htm.
  14. 14.
    Bamford P, Lovell B. 1997. A two-stage scene segmentation scheme for the automatic collection of cervical cell images. In Proceedings of TENCON ’97: IEEE region 10 annual conference on speech and image technologies for computing and telecommunications, pp. 683-686.Washington, DC: IEEE.CrossRefGoogle Scholar
  15. 15.
    Giraldi GA, Strauss E, Oliveira AF. 2000. A boundary extraction method based on Dual-T-snakes and dynamic programming. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR ’2000), Vol. 1, pp. 44-49. Washington, DC: IEEE.Google Scholar
  16. 16.
    Giraldi GA, Strauss E, Oliveira AF. 2001. Improving the dual-t-snakes model. In Proceed-ings of the international symposium on computer graphics, image processing and vision (SIB-GRAPI’2001), Florian ópolis, Brazil, October 15-18, pp. 346-353.Google Scholar
  17. 17.
    Giraldi GA, Strauss E, Oliveira AF. 2003. Dual-T-snakes model for medical imaging segmentation. Pattern Recognit Lett 24(7):993-1003.CrossRefGoogle Scholar
  18. 18.
    Gunn SR. 1996. Dual active contour models for image feature extraction. Phd dissertation, Uni- versity of Southampton.Google Scholar
  19. 19.
    Bamford P, Lovell B. 1995. Robust cell nucleus segmentation using a viterbi search based active contour. In Proceedings of the fifth international conference on computer vision (ICCV’95), Cambridge, MA, USA pp. 840-845.Google Scholar
  20. 20.
    Gunn SR, Nixon MS. 1997. A robust snake implementation; a dual active contour. IEEE Trans Pattern Anal Machine Intell 19(1):63-68.CrossRefGoogle Scholar
  21. 21.
    Xu G, Segawa E, Tsuji S. 1994. Robust active contours with insensitive parameters. Pattern Recognit 27(7):879-884.CrossRefGoogle Scholar
  22. 22.
    Gunn SR, Nixon MS. 1996. Snake head boundary extraction using global and local energy minimisation. Proc IEEE Int Conf Pattern Recognit 2:581-585.CrossRefGoogle Scholar
  23. 23.
    McInerney T, Terzopoulos D. 2000. T-snakes: topology adaptive snakes. Med Image Anal 4(2):73-91.CrossRefGoogle Scholar
  24. 24.
    McInerney TJ. 1997. Topologically adaptable deformable models for medical image analysis. PhD dissertation. University of Toronto.Google Scholar
  25. 25.
    Sethian JA. 1996. Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and materials sciences. Cambridge: Cambridge UP.Google Scholar
  26. 26.
    Osher S, Sethian JA. 1988. Fronts propagation with curvature-dependent speed: algorthms based on Hamilton-Jacobi formulations. J Comput Phys 79:12-49.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Suri JS, Liu K, Singh S, Laxminarayan S, Zeng X, Reden L. 2002. Shape recovery algorithms using level sets in 2d/3d medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 6(1):8-28.CrossRefGoogle Scholar
  28. 28.
    You Y-L, Xu W, Tannenbaum A, Kaveh M. 1996. Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans Image Process 5(11):1539-1553.CrossRefGoogle Scholar
  29. 29.
    Mauch S.2000. A fast algorithm for computing the closest point and distance function. Unpublished technical report. California Institute of Technology, September. http://www.acm.caltech.edu/ seanm/projects/cpt/cpt.pdf.
  30. 30.
    Sigg C, Peikert R. 2005. Optimized bounding polyhedra for GPU-based distance transform. In Scientific visualization: the visual extraction of knowledge from data, pp. 65-78. Ed GP Bonneau, T Ertl, GM Nielson. New York: Springer.Google Scholar
  31. 31.
    Udupa J, Samarasekera S. 1996. Fuzzy connectedness and object definition: theory, algorithms and applications in image segmentation. Graphical Models Image Process 58(3), 246-261.CrossRefGoogle Scholar
  32. 32.
    Bezdek JC, Hall LO. 1993. Review of MR image segmentation techniques using pattern recog- nition. Med Phys 20(4):1033-1048.CrossRefGoogle Scholar
  33. 33.
    Xu C, Pham D, Rettmann M, Yu D, Prince J. 1999. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467-480.CrossRefGoogle Scholar
  34. 34.
    Pohle R, Behlau T, Toennies KD. 2003. Segmentation of 3D medical image data sets with a combination of region based initial segmentation and active surfaces. In Progress in biomedical optics and imaging. Proc SPIE Med Imaging 5203:1225-1231.Google Scholar
  35. 35.
    Falc ão AX, da Cunha BS, Lotufo RA. 2001. Design of connected operators using the image foresting transform. Proc SPIE Med Imaging 4322:468-479.Google Scholar
  36. 36.
    Xu C, Prince J. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Xu C, Prince JL. 2000. Global optimality of gradient vector flow. In Proceedings of the 34th annual conference on information sciences and systems (CISS’00). iacl.ece.jhu.edu/pubs/p125c.ps.gz.Google Scholar
  38. 38.
    Hang X, Greenberg NL, Thomas JD. 2002. A geometric deformable model for echocardiographic image segmentation. Comput Cardiol 29:77-80.Google Scholar
  39. 39.
    Leventon ME, Eric W, Grimson L, Faugeras OD. 2000. Statistical shape influence in geodesic active contours. Proc IEEE Int Conf Pattern Recognit 1:316-323.Google Scholar
  40. 40.
    Jain AK. 1989. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  41. 41.
    Poon CS, Braun M. 1997. Image segmentation by a deformable contour model incorporating region analysis. Phys Med Biol 42:1833-1841.CrossRefGoogle Scholar
  42. 42.
    Williams DJ, Shah M. 1992.A fast algorithm for active contours and curvature estimation. Comput Vision Image Understand 55(1):14-26.MATHGoogle Scholar
  43. 43.
    Zeng X, Staib LH, Schultz RT, Duncan JS. 1999. Segmentation and measurement of the cortex from 3d MR images. IEEE Trans Med Imaging 18:100-111.CrossRefGoogle Scholar
  44. 44.
    Zeng X, Staib LH, Schultz RT, Duncan JS. 1999. Segmentation and measurement of the cortex from 3d MR images using coupled-surfaces propagation. IEEE Trans Med Imaging 18(10):927-937.CrossRefGoogle Scholar
  45. 45.
    Cates JE, Lefohn AE, Whitaker RT. 2004. GIST: an interactive, GPU-based level set segmenta-tion tool for 3D medical images. http://www.cs.utah.edu/research/techreports/2004/pdf/UUCS-04-007.pdf.
  46. 46.
    Franca LP, Madureira AL, Valentin F. 2003. Towards multiscale functions: Enriching finite el-ement spaces with local but not bubble-like functions. Technical Report no. 26/2003, National Laboratory for Scientific Computing, Petropolis, Brazil.Google Scholar
  47. 47.
    Hughes TJR. 1987. The finite element method: linear static and dynamic finite element analysis. Englewood Cliffs: Prentice-Hall.MATHGoogle Scholar
  48. 48.
    Sapiro G.1995. Color snakes. Technical report, Hewlett-Packard Laboratories (guille@hpl.hp.com).Google Scholar
  49. 49.
    Crandall MG, Ishii H, Lions P-L. 1992. User’s guide to viscosity solutions of second-order partial differential equations. Bull Am Math Soc 27:1-67.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Jin S, Katsoulakis MA, Xin Z. 1999. Relaxation schemes for curvature-dependent front propa-gation. Commun Pure Appl Math 52(12):1557-1615.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gilson A. Giraldi
    • 1
  • Paulo S. S. Rodrigues
    • 1
  • Rodrigo L. S. Silva
    • 1
  • Antonio L. ApolinárioJr.
    • 1
  • Jasjit S. Suri
    • 2
  1. 1.National Laboratory for Scientific ComputingQuitandinhaBrazil
  2. 2.Biomedical Research InstituteIdaho State UniversityPocatelloUSA

Personalised recommendations