Skip to main content

Distance Transform Algorithms And Their Implementation And Evaluation

  • Chapter
Book cover Deformable Models

Consider an n-dimensional binary image consisting of one or more objects. A value of 1 indicates a point within some object and a value of 0 indicates that that point is part of the background (i.e., is not part of any object). For every point in some object, a distance transform assigns a value indicating the distance from that point within the object to the nearest background point. Similarly for every point in the background, a distance transform assigns a value indicating the minimum distance from that background point to the nearest point in any object. By convention, positive values indicate points within some object and negative values indicate background points. A number of elegant and efficient distance transform algorithms have been proposed, with Danielsson being one of the earliest in 1980 and Borgefors in 1986 being a notable yet simple improvement. In 2004 Grevera proposed a further improvement of this family of distance transform algorithms that maintains their elegance but increases accuracy and extends them to n-dimensional space as well. In this paper, we describe this family of algorithms and compare and contrast them with other distance transform algorithms. We also present a novel framework for evaluating distance transform algorithms and discuss applications of distance transforms to other areas of image processing and analysis such as interpolation and skeletonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Udupa JK. 1994. Multidimensional digital boundaries. Comput Vision Graphics Image Process: Graphical Models Image Process 56(4):311-323.

    Google Scholar 

  2. Cuisenaire O. 1999. Distance transformations: fast algorithms and applications to medical image processing. PhD thesis. Universit é Catholique de Louvian.

    Google Scholar 

  3. Rosenfeld A, Pfaltz JL. 1968. Distance functions on digital pictures. Pattern Recognit 1(1):33-61.

    Article  MathSciNet  Google Scholar 

  4. Montanari U. 1968. A method for obtaining skeletons using a quasi-Euclidean distance. J Assoc Comput Machin 15:600-624.

    Google Scholar 

  5. Danielsson P-E. 1980. Euclidean distance mapping. Comput Graphics Image Process 14:227-248.

    Article  Google Scholar 

  6. Borgefors G. 1986. Distance transformations in digital images. Comput Vision Graphics Image Process 34:344-371.

    Article  Google Scholar 

  7. Borgefors G. 1996. On digital distance transforms in three dimensions. Comput Vision Image Understand 64(3):368-376.

    Article  Google Scholar 

  8. Butt MA, Maragos P. 1998. Optimum design of chamfer distance transforms. IEEE Trans Image Process 7(10):1477-1484.

    Article  Google Scholar 

  9. Marchand-Maillet S, Sharaiha YM. 1999. Euclidean ordering via Chamfer distance calculations. Comput Vision Image Understand 73(3):404-413.

    Article  MATH  Google Scholar 

  10. Nilsson NJ. Artificial intelligence: a new synthesis. San Francisco: Morgan Kaufmann, 1998.

    MATH  Google Scholar 

  11. Verwer BJH, Verbeek PW, Dekker ST. 1989.An efficient uniform cost algorithm applied to distance transforms. IEEE Trans Pattern Anal Machine Intell 11(4):425-429.

    Article  Google Scholar 

  12. Leymarie F, Levine MD. 1992. Fast raster scan distance propagation on the discrete rectangular lattice. Comput Vision Graphics Image Process: Image Understand 55(1):84-94.

    MATH  Google Scholar 

  13. Satherley R, Jones MW. 2001. Vector-city vector distance transform. Comput Vision Image Un- derstand 82:238-254.

    Article  MATH  Google Scholar 

  14. Ragnemalm I. 1992. Neighborhoods for distance transformations using ordered propagation. Com-put Vision Graphics Image Process: Image Understand 56(3):399-409.

    MATH  Google Scholar 

  15. Guan W, Ma S. 1998. A list-processing approach to compute Voronoi diagrams and the Euclidean distance transform. IEEE Trans Pattern Anal Machine Intell 20(7):757-761.

    Article  Google Scholar 

  16. Eggers H. 1998. Two fast Euclidean distance transformations in Z2 based on sufficient propagation. Comput Vision Image Understand 69(1):106-116.

    Article  Google Scholar 

  17. Saito T, Toriwaki J-I. 1994. New algorithms for euclidean distance transformation of an n-dimensional digitized picture with application. Pattern Recognit 27(11):1551-1565.

    Article  Google Scholar 

  18. Boxer L, Miller R. 2000. Efficient computation of the Euclidean distance transform. Comput Vision Image Understand 80:379-383.

    Article  MATH  Google Scholar 

  19. Meijster A, Roerdink JBTM, Hesselink WH. 2000. A general algorithm for computing distance transforms in linear time. In Mathematical morphology and its applications to image and signal processing, pp. 331-340. Ed. J Goutsias, L Vincent, DS Bloombers. New York: Kluwer.

    Google Scholar 

  20. Lotufo RA, Falcao AA, Zampirolli FA. 2000. Fast Euclidean distance transform using a graph- search algorithm. SIBGRAPI 2000:269-275.

    Google Scholar 

  21. da Fontoura Costa L. 2000. Robust skeletonization through exact Euclidean distance transform and its application to neuromorphometry. Real-Time Imaging 6:415-431.

    Article  MATH  Google Scholar 

  22. Pudney C. 1998. Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput Vision Image Understand 72(3):404-413.

    Article  Google Scholar 

  23. Sanniti di Baja G. 1994. Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. J Visual Commun Image Represent 5(1):107-115.

    Article  Google Scholar 

  24. Svensson S, Borgefors G. 1999. On reversible skeletonization using anchor-points from distance transforms. J Visual Commun Image Represent 10:379-397.

    Article  Google Scholar 

  25. Herman GT, Zheng J, Bucholtz CA. 1992. Shape-based interpolation, IEEE Comput Graphics Appl 12(3):69-79.

    Article  Google Scholar 

  26. Raya SP, Udupa JK. 1990. Shape-based interpolation of multidimensional objects. IEEE Trans Med Imaging 9(1):32-42.

    Article  Google Scholar 

  27. Grevera GJ, Udupa JK. 1996. Shape-based interpolation of multidimensional grey-level images. IEEE Trans Med Imaging 15(6):881-892.

    Article  Google Scholar 

  28. Kozinska D. 1997. Multidimensional alignment using the Euclidean distance transform. Graphical Models Image Process 59(6):373-387.

    Article  Google Scholar 

  29. Paglieroni DW. 1997. Directional distance transforms and height field preprocessing for efficient ray tracing. Graphical Models Image Process 59(4):253-264.

    Article  Google Scholar 

  30. Remy E, Thiel E. 2000. Computing 3D medial axis for Chamfer distances. Discrete Geom Comput Imagery pp. 418-430.

    Google Scholar 

  31. Remy E, Thiel E. 2002. Medial axis for chamfer distances: computing look-up tables and neigh- bourhoods in 2D or 3D. Pattern Recognit Lett 23(6):649-662.

    Article  MATH  Google Scholar 

  32. Grevera GJ, Udupa JK. 1998. An objective comparison of 3D image interpolation methods. IEEE Trans Med Imaging 17(4):642-652.

    Article  Google Scholar 

  33. Grevera GJ, Udupa JK, Miki Y. 1999. A task-specific evaluation of three-dimensional image inter-polation techniques. IEEE Trans Med Imaging 18(2):137-143.

    Article  Google Scholar 

  34. Travis AJ, Hirst DJ, Chesson A. 1996. Automatic classification of plant cells according to tissue type using anatomical features obtained by the distance transform. Ann Botany 78:325-331.

    Article  Google Scholar 

  35. Van Der Heijden GWAM, Van De Vooren JG, Van De Wiel CCM. 1995. Measuring cell wall dimensions using the distance transform. Ann Botany 75:545-552.

    Article  Google Scholar 

  36. Schnabel JA, Wang L, Arridge SR. 1996. Shape description of spinal cord atrophy in patients with MS. Comput Assist Radiol ICS 1124:286-291.

    Google Scholar 

  37. Grevera GJ. 2004. The “dead reckoning” signed distance transform. Comput Vision Image Under- stand 95:317-333.

    Article  Google Scholar 

  38. Oppenheim AV, Schafer RW, Buck JR. 1999. Discrete-time signal processing, 2d ed. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  39. Cormen TH, Leiserson CE, Rivest RL, Stein C. 2001. Introduction to algorithms, 2d ed. Cambridge: MIT Press.

    MATH  Google Scholar 

  40. Svensson S, Borgefors G. 2002. Digital distance transforms in 3D images using information from neighbourhoods up to 5x5x5. Comput Vision Image Understand 88:24-53.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grevera, G.J. (2007). Distance Transform Algorithms And Their Implementation And Evaluation. In: Deformable Models. Topics in Biomedical Engineering. International Book Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68413-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68413-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-31201-9

  • Online ISBN: 978-0-387-68413-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics