Advertisement

Deformable Organisms For Medical Image Analysis

  • Ghassan Hamarneh
  • Chris McIntosh
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

In medical image analysis strategies based on deformable models, controlling the deformations of models is a desirable goal in order to produce proper segmentations. Interaction, global-to-local deformations, shape statistics, setting low-level parameters, and incorporating new forces or energy terms. However, incorporating expert knowledge to automatically guide deformations can not be easily and elegantly achieved using the classical deformable model low-level energy-based fitting mechanisms. In this chapter we review Deformable Organisms, a decision-making framework for medical image analysis that complements bottom–up, data-driven deformable models with top–down, knowledgedriven mode-fitting strategies in a layered fashion inspired by artificial life modeling concepts. Intuitive and controlled geometrically and physically based deformations are carried out through behaviors. Sensory input from image data and contextual knowledge about the analysis problem govern these different behaviors. Different deformable organisms for segmentation and labeling of various anatomical structures from medical images are also presented in this chapter.

Keywords

Medial Axis Color Version Deformable Model Shape Deformation Shape Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoo TS. 2004. Insight into images: principles and practice for segmentation. Wellesley, MA: AK Peters Ltd.Google Scholar
  2. 2.
    Robb RA. 2000. Biomedical imaging. New York: Wiley-Liss.Google Scholar
  3. 3.
    Dhawan A. 2003. Medical image analysis. Wiley-IEEEE Press.Google Scholar
  4. 4.
    Bankman I. 2000. Handbook of medical imaging: processing and analysis. NewYork: Academic Press.Google Scholar
  5. 5.
    Sonka M, Fitzpatrick J. 2000. Handbook of medical imaging. Bellingham, WA: SPIE.Google Scholar
  6. 6.
    McInerney T, Kikinis R. 1998. An object-based volumetric deformable atlas for the improved localization of neuroanatomy in MR images. In Proceedings of the first international conference on medical image computing and computer-assisted intervention (MICCAI’98). Lecture Notes in Computer Science, Vol. 1496, pp. 861-869. Berlin: Springer.Google Scholar
  7. 7.
    Shen D, Davatzikos C. 2000. An adaptive-focus deformable model using statistical and geometric information. IEEE Trans Pattern Anal Machine Intell 22(8):906-913.CrossRefGoogle Scholar
  8. 8.
    Tsotsos J, Mylopoulos J, Covvey H, Zucker S. 1980. A framework for visual motion understand-ing. IEEE Trans Pattern Anal Machine Intell 2(6):563-573.Google Scholar
  9. 9.
    Draper BA, Hanson AR, Riseman EM. 1993. Learning blackboard-based scheduling algorithms for computer vision. Int J Pattern Recognit Artif Intell 7(2):309-328.CrossRefGoogle Scholar
  10. 10.
    Draper BA, Hanson AR, Riseman EM. 1996. Knowledge-directed vision: control, learning, and integration. Proc IEEE Signals Symbols 84(11):1625-1637.Google Scholar
  11. 11.
    Crevier D, Lepage R. 1997. Knowledge-based image understanding systems: a survey. Comput Vision Image Understand 67(2):161-185.CrossRefGoogle Scholar
  12. 12.
    Strat T, Fischler M. 1991. Context-based vision: recognizing objects using information from both 2D and 3D imagery. IEEE Trans Pattern Anal Machine Intell 13(10):1050-1065.CrossRefGoogle Scholar
  13. 13.
    Poli R. 1996. Genetic programming for image analysis. In Proceedings of the first international conference on genetic programming, pp. 363-368. Ed JR Koza, DE Goldberg, DB Fogel, RL. Cambridge: MIT Press.Google Scholar
  14. 14.
    Martin MC.2002. Genetic programming for real world robot vision. In Proceedings of the international conference on intelligent robots and systems(IEEE/RSJ), pp. 67-72. Washington, DC: IEEE. Available at http://martincmartin.com/papers/GeneticProgramming ForRealWorldRobotVisionIROS2002Martin.pdf
  15. 15.
    Liu J, Tang Y. 1999. Adaptive image segmentation with distributed behavior-based agents. IEEE Trans Pattern Anal Machine Intell 21(6):544-550.CrossRefGoogle Scholar
  16. 16.
    Germond L, Dojat M, Taylor C, Garbay C. 2000. A cooperative framework for segmentation of MRI brain scans. Artif Intell Med 20(1):77-93.CrossRefGoogle Scholar
  17. 17.
    Boucher A, Doisy A, Ronot X, Garbay C. 1998. A society of goal-oriented agents for the analysis of living cells. Artif Intell Med 14:183-199.CrossRefGoogle Scholar
  18. 18.
    Rodin V, Harrouet F, Ballet P, Tisseau J. 1998. oRis: multiagents approach for image processing. In Proceedings of the SPIE conference on parallel and distributed methods for image processing II, Vol. 3452, 57-68. Ed S Hongchi, PC Coffield. Bellingham, WA: SPIE.Google Scholar
  19. 19.
    Bazen AM, van Otterlo M. 2001. A reinforcement learning agent for minutiae extraction from fingerprints. In Proceedings of the Belgium-Netherlands Artificial Intelligence Conference (BNAIC’01), pp. 329-336. Ed B. Kr öose, M de Rijke, G Schreiber, M van Someren. Washington, DC: IEEE Computer Society.Google Scholar
  20. 20.
    McInerney T, Terzopoulos D. 1996. Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91-108.CrossRefGoogle Scholar
  21. 21.
    Montagnat J, Delingette H, Ayache N. 2001. A review of deformable surfaces: topology. Image Vision Comput 19(14):1023-1040.CrossRefGoogle Scholar
  22. 22.
    Osher S, Paragios N. 2003. Geometric level set methods in imaging vision and graphics. Berlin: Springer.MATHGoogle Scholar
  23. 23.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22(1):61-79.MATHCrossRefGoogle Scholar
  24. 24.
    Sethian JA. 1996. Level set methods: evolving interfaces in geometry, computer vision and material sciences. Cambridge: Cambridge UP.Google Scholar
  25. 25.
    Cootes TF, Cooper D, Taylor CJ, Graham J. 1995. Active shape models: their training and application. Comput Vision Image Understand 61(1):38-59.CrossRefGoogle Scholar
  26. 26.
    Cootes T, Beeston C, Edwards G, Taylor C. 1999. A unified framework for atlas matching us-ing active appearance models. In Proceedings of the 17th international conference on image processing in medical imaging (IPMI’99), pp. 322-333. Berlin: Springer.Google Scholar
  27. 27.
    Szekely G, Kelemen A, Brechbuehler Ch, Gerig G. 1996. Segmentation of 3D objects from MRI volume data using constrained elastic deformations of flexible Fourier surface models. Med Image Anal 1(1):19-34.Google Scholar
  28. 28.
    Lundervold A, Duta N, Taxt T, Jain A. 1999. Model-guided segmentation of corpus callosum in MR images. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition, Vol. 1, pp. 231-237. Washington, DC: IEEE Computer Society.Google Scholar
  29. 29.
    Cohen LD. 1991. On active contour models and balloons. ComputVision Graphics Image Process: Image understand 53(2):211-218.MATHGoogle Scholar
  30. 30.
    Xu C, Prince J. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Cootes TF, Edwards GJ, Taylor CJ. 2001. Active appearance models. IEEE Trans Pattern Anal Machine Intell 23(1):681-685.CrossRefGoogle Scholar
  32. 32.
    Leventon M, Grimson W, Faugeras O. 2000. Statistical shape influence in geodesic active con-tours. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition, Vol. 1. pp. 316-323. Washington, DC: IEEE Computer Society.Google Scholar
  33. 33.
    Warfield SK, Kaus M, Jolesz FA, Kikinis R. 2000.Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43-55.CrossRefGoogle Scholar
  34. 34.
    Hamarneh G, Gustavsson T. 2000. Statistically constrained snake deformations. In Proceedings of the international conference on systems, man, and cybernetics, Vol. 3, pp. 1610-1615. Washington, DC: IEEE Computer Society.Google Scholar
  35. 35.
    Choi C, Wirth M, Jennings A. 1997. Segmentation: artificial life and watershed transform ap-proach. In Sixth international conference on image processing and its applications, Vol. 1, pp. 371-375. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  36. 36.
    Kagawa H, Kinouchi M, Hagiwara M. 1999. Image segmentation by artificial life approach using autonomous agents. In Proceedings of the international joint conference on neural networks, Vol. 6, pp. 4413-4418. Washington, DC: IEEE Computer Society.Google Scholar
  37. 37.
    Kim K-J, Cho S-B. 2006. A comprehensive overview of the applications of artificial life. Artif Life 12(1):153-182.CrossRefGoogle Scholar
  38. 38.
    Hamarneh G, McInerney T, Terzopoulos D. 2001. Deformable organisms for automatic medical image analysis. In Proceedings of the fourth international conference on medical image computing and computer-assisted intervention (MICCAI’01). Lecture Notes in Computer Science, Vol. 2208, pp. 66-75. Berlin: Springer.Google Scholar
  39. 39.
    Terzopoulos D. 1999. Artificial life for computer graphics. Commun ACM 42(8):32-42CrossRefGoogle Scholar
  40. 40.
    Bookstein F. 1997. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge UP.Google Scholar
  41. 41.
    Costa L, Cesar Jr R. 2000. Shape analysis and classification: theory and practice. Boca Raton, FL: CRC Press.Google Scholar
  42. 42.
    Dryden I, Mardia K. 1998. Statistical shape analysis. New York: John Wiley and Sons.MATHGoogle Scholar
  43. 43.
    Lachaud J, Montanvert A. 1999. Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med Image Anal 3(1):1-21.CrossRefGoogle Scholar
  44. 44.
    Mandal C, Vemuri B, Qin H. 1998. A new dynamic FEM-based subdivision surface model for shape recovery and tracking in medical images. In Proceedings of the first international conference on medical image computing and computer-assisted intervention (MICCAI’98). Lecture Notes in Computer Science, Vol. 1496, pp. 753-760. Berlin: Springer.Google Scholar
  45. 45.
    Miller J, Breen D, Lorensen W, O’Bara R, Wozny MJ. 1991. Geometrically deformed models: a method for extracting closed geometric models from volume data. In Proceedings of the 18th annual conference on computer graphics and interactive techniques (SIGGRAPH’91), Vol. 25, pp. 217-226. New York: ACM Press.CrossRefGoogle Scholar
  46. 46.
    Montagnat J, Delingette H. 1997.Volumetric medical image segmentation using shape constrained deformable models. In Proceedings of the second international conference on computer vision, virtual reality and robotics in medicine (CVRMed-MRCAS’97). Lecture Notes in Computer Sci-ence, Vol. 1205, pp. 13-22. Berlin: Springer.Google Scholar
  47. 47.
    Barr A. 1984. Global and local deformations of solid primitives. In Proceedings of the 11th annual conference on computer graphics and interactive techniques (SIGGRAPH’84), Vol. 18, pp. 21-30. New York: ACM Press.CrossRefGoogle Scholar
  48. 48.
    Coquillart S. 1990. Extended free form deformations: a sculpting tool for 3d geometric modeling. In Proceedings of the 17th annual conference on computer graphics and interactive techniques (SIGGRAPH’90), Vol. 24, pp. 187-196. New York: ACM Press.CrossRefGoogle Scholar
  49. 49.
    Sederberg TW, Parry SR. 1986. Free-form deformation of solid geometric models. In Proceedings of the 13th annual conference on computer graphics and interactive techniques (SIGGRAPH’86), Vol. 4, pp. 151-160. New York: ACM Press.CrossRefGoogle Scholar
  50. 50.
    Singh K, Fiume E. 1998. Wires: a geometric deformation technique. In Proceedings of the 25th annual conference on computer graphics and interactive techniques (SIGGRAPH’98), Vol. 99, No. 1, pp. 405-414. New York: ACM Press.CrossRefGoogle Scholar
  51. 51.
    Terzopoulos D, Metaxas D. 1991. Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Trans Pattern Anal Machine Intell 13(7):703-714.CrossRefGoogle Scholar
  52. 52.
    Burel G, Henocq H. 1995. Three-dimensional invariants and their application to object recogni-tion. Signal Process 45(1):1-22.MATHCrossRefGoogle Scholar
  53. 53.
    Davatzikos C, Tao X, Shen D. 2003. Hierarchical active shape models: using the wavelet trans- form. IEEE Trans Med Imaging 22(3):414-423.CrossRefGoogle Scholar
  54. 54.
    McInerney T, Terzopoulos D. 1995. A dynamic finite-element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comput Med Imaging Graphics 19(1):69-83.CrossRefGoogle Scholar
  55. 55.
    Mortenson M. 1997. Geometric modeling. New York: Wiley.Google Scholar
  56. 56.
    Blum H. 1973. Biological shape and visual science. Theor Biol 38:205-287.CrossRefMathSciNetGoogle Scholar
  57. 57.
    Attali D, Montanvert A. 1997. Computing and simplifying 2D and 3D continuous skeletons. Comput Vision Image Understand 67(3):261-273.CrossRefGoogle Scholar
  58. 58.
    Borgefors G, Nystrom I, Baja GSD. 1999. Computing skeletons in three dimensions. Pattern Recognit 32:1225-1236.CrossRefGoogle Scholar
  59. 59.
    Bouix S, Dimitrov P, Phillips C, Siddiqi K. 2000. Physics-based skeletons. In Proceedings of the vision interface conference, pp. 23-30.Google Scholar
  60. 60.
    Dimitrov P, Damon J, Siddiqi K. 2003. Flux invariants for shape. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR’03), pp. 835-841. Washington, DC: IEEE Computer Society.Google Scholar
  61. 61.
    Fritsch D, Pizer S, Yu L, Johnson V, Chaney E. 1997. Segmentation of medical image objects using deformable shape loci. In Proceedings of the 15th international conference on information processing in medical imaging (IPMI’97). Lecture notes in computer science, Vol. 1230, pp. 127-140. Berlin: Springer.Google Scholar
  62. 62.
    Hamarneh G, McInerney T. 2003. Physics-based shape deformations for medical image analysis. In Proceedings of the 2nd SPIE conference on image processing: algorithms and systems (SPIE-IST’03), Vol. 5014, pp. 354-362. Ed ER Dougherty, JT Astola, KO Egiazarian.Google Scholar
  63. 63.
    Hamarneh G, Abu-Gharbieh R, McInerney T. 2004. Medial profiles for modeling deformation and statistical analysis of shape and their use in medical image segmentation. Int J Shape Model 10 (2):187-209.MATHCrossRefGoogle Scholar
  64. 64.
    Leymarie F, Levine MD. 1992. Simulating the grassfire transform using an active contour model. IEEE Trans Pattern Anal Machine Intell 14(1):56-75.CrossRefGoogle Scholar
  65. 65.
    Pizer S, Fritsch D. 1999. Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans Med Imaging 18(10):851-865.CrossRefGoogle Scholar
  66. 66.
    Pizer S, Gerig G, Joshi S, Aylward SR. 2003. Multiscale medial shape-based analysis of image objects. Proc IEEE 91(10):1670-1679.CrossRefGoogle Scholar
  67. 67.
    Sebastian T, Klein P, Kimia B. 2001. Recognition of shapes by editing shock graphs. In Proceed- ings of the international conference on computer vision (ICCV’01), pp. 755-762. Washington, DC: IEEE Computer Society.Google Scholar
  68. 68.
    Siddiqi K, Bouix S, Tannenbaum A, Zucker S. 2002. Hamilton-Jacobi skeletons. Int J Comput Vision 48(3):215-231.MATHCrossRefGoogle Scholar
  69. 69.
    Duta N, Sonka M, Jain A. 1999. Learning shape models from examples using automatic shape clustering and Procrustean analysis. In Proceedings of the 17th international conference on in-formation processing in medical imaging (IPMI’99). Lecture Notes in Computer Science, Vol. 1613, pp. 370-375.Google Scholar
  70. 70.
    Yushkevich P, Joshi S, Pizer SM, Csernansky J, Wang L. 2003. Feature selection for shape-based classification of biological objects. In Proceedings of the 17th international conference on information processing in medical imaging (IPMI’03). Lecture Notes in Computer Science, Vol. 2732, pp. 114-125.Google Scholar
  71. 71.
    Styner M, Gerig G, Lieberman J, Jones D, Weinberger D. 2003. Statistical shape analysis of neuroanatomical structures based on medial models. Med Image Anal 7(3):207-220.CrossRefGoogle Scholar
  72. 72.
    Lu C, Pizer S, Joshi S. 2003. A Markov random field approach to multiscale shape analysis. In Proceedings of the conference on scale space methods in computer vision. Lecture Notes in Computer Science, Vol. 2695, pp. 416-431. Available at http://midag.cs.unc.edu/pubs/papers/ ScaleSpace03 Lu shape.pdf.
  73. 73.
    Grenander U. 1963. Probabilities on algebraic structures. New York: Wiley.MATHGoogle Scholar
  74. 74.
    Fletcher P, Conglin L, Pizer S, Joshi S. 2004. Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995-1005.CrossRefGoogle Scholar
  75. 75.
    Bill JR, Lodha SK. 1995. Sculpting polygonal models using virtual tools. In Proceedings of the conference on the graphics interface, pp. 272-279. New York: ACM Press.Google Scholar
  76. 76.
    O’Donnell T, Boult T, Fang X, Gupta A. 1994. The extruded generalized cylinder: a deformable model for object recovery. In Proceedings of the IEEE computer society conference on com-puter vision and pattern recognition (CVPR’94), pp. 174-181. Washington, DC: IEEE Computer Society.Google Scholar
  77. 77.
    Perona P, Malik J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12(7):629-639.CrossRefGoogle Scholar
  78. 78.
    Weickert J. 1998. Anisotropic diffusion in image processing. ECMI Series. Stuttgart: Teubner.Google Scholar
  79. 79.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA. 1998. Multiscale vessel enhancement fil-tering. In Proceedings of the first international conference on medical image computing and computer-assisted intervention (MICCAI’98). Lecture Notes in Computer Science, Vol. 1496, pp. 130-137. Berlin: Springer.Google Scholar
  80. 80.
    Hamarneh G, McIntosh C. 2005. Physics-based deformable organisms for medical image analysis. In Proceedings of the SPIE conference on medical imaging: image processing, Vol. 5747, pp. 326-335. Bellingham, WA: SPIE.Google Scholar
  81. 81.
    Kimme C, Ballard DH, Sklansky J. 1975. Finding circles by an array of accumulators. Commun Assoc Comput Machinery 18:120-122.MATHGoogle Scholar
  82. 82.
    Bullitt E, Gerig G, Aylward SR, Joshi SC, Smith K, Ewend M, Lin W. 2003. Vascular attributes and malignant brain tumors. In Proceedings of the sixth international conference on medical image computing and computer-assisted intervention (MICCAI’03). Lecture Notes in Computer Science, Vol. 2878, pp. 671-679. Berlin: Springer.Google Scholar
  83. 83.
    Terzopoulos D. 1986. On matching deformable models to images. Technical Report 60, Schlum-berger Palo Alto Research. Reprinted in Topical Meeting MachineVision, Technical Digest Series 12:160-167 (1987).Google Scholar
  84. 84.
    Kass M, Witkin A, Terzopoulos D. 1987. Snakes: active contour models. Int J Comput Vision 1(4):321-331.CrossRefGoogle Scholar
  85. 85.
    McInerney T, Hamarneh G, Shenton M, Terzopoulos D. Deformable organisms for automatic medical image analysis. J Med Image Anal 6(3):251-266.Google Scholar
  86. 86.
    C. McIntosh and G. Hamarneh, Vessel Crawlers: 3D Physically-based Deformable Organisms for Segmentation and Analysis of Tubular Structures in Medical Images. IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1084-1091.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ghassan Hamarneh
    • 1
  • Chris McIntosh
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations