Advertisement

Simulating Bacterial Biofilms

  • David L. Chopp
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Biofilms are the most ubiquitous form of life on the planet. More than 90% of bacteria live in biofilms, which are aggregates of cells attached to both biotic and abiotic surfaces [6, 13]. Biofilms are responsible for nitrogen loss from agricultural fertilizers, and they deplete oxygen in streams, cause disease in humans and plants, and foul pipes, heat exchangers, and ship hulls. Biofilms are responsible for a number of human diseases, including cystic fibrosis and Legionnaire’s disease, and are a potential source of nosocomial infections. According to The Biofilm Institute, biofilms cost U.S. industry billions of dollars annually in equipment and product damage, energy losses, and human infections.

Keywords

Extracellular Polymeric Substance Enrichment Function Immerse Boundary Method Bicubic Interpolation Immerse Interface Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adalsteinsson D, Sethian JA. 1999. The fast construction of extension velocities in level set methods. J Comput Phys 48(1):2-22.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bakke R, Characklis WG, Turakhia MH, Yeh A. 1990. Modeling a monopopulation biofilm system: pseudomonas aeruginosa. In Biofilms. New York: John Wiley & Sons.Google Scholar
  3. 3.
    Belytschko T, Black T. 1999. Elastic crack growth in finite element with minimal remeshing. Int J Num Meth Eng 45:601-620.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bramble J, King J. 1996. A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv Comput Math 6:109-138.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chang I, Gilber ES, Eliashberg N, Keasling JD. 2003. A three-dimensional, stochastic sim-ulation of biofilm growth and transport-related factors that affect structure. Microbiol-SGM 149 (10):2859-2871.CrossRefGoogle Scholar
  6. 6.
    Characklis WG, Marshall KC. 1990. Biofilms. New York: John Wiley & Sons.Google Scholar
  7. 7.
    Chen Z, Zou J. 1998. Finite element methods and their convergence for elliptic and parabolic interface problems. J Num Math 79:175-202.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chopp DL. 2001. Some improvements of the fast marching method. SIAM J Sci Comp 23(1):230-244.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chopp DL, Kirisits MJ, Moran B, Parsek M. 2002. A mathematical model of quorum sensing in a growing P. aeruginosa biofilm. J Ind Microbiol Biotechnol 29(6):339-346.CrossRefGoogle Scholar
  10. 10.
    Chopp DL, Kirisits MJ, Parsek MR, Moran B. 2003. The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol. To appear.Google Scholar
  11. 11.
    Chopp DL, Sukumar N. 2003. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845-869, 2003.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chopp DL, Sukumar N. 2003. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41(8):845-869.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711-745.CrossRefGoogle Scholar
  14. 14.
    Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284:1318-1322.CrossRefGoogle Scholar
  15. 15.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The in-volvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298.CrossRefGoogle Scholar
  16. 16.
    De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865-1873.CrossRefGoogle Scholar
  17. 17.
    Dockery J, Klapper I. 2001. Finger formation in biofilm layers. SIAM J Appl Math 62(3):853-869.MATHMathSciNetGoogle Scholar
  18. 18.
    Dolbow JE, Moës N, Belytschko T. 2000. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem Anal Des 36:235-260.MATHCrossRefGoogle Scholar
  19. 19.
    Dolbow JE, Moës N, Belytschko T. 2001. An extended finite element method for modeling crack growth with frictional contact. Comput Meth Appl Mech Eng 190:6825-6846.MATHCrossRefGoogle Scholar
  20. 20.
    Eberl HJ, Parker DF, van Loosdrecht MCM. 2001. A new deterministic spatiotemporal continuum model for biofilm development. J Theor Med 3:161-175.MATHGoogle Scholar
  21. 21.
    Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM. 2000. A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci 55:6209-6222.CrossRefGoogle Scholar
  22. 22.
    Chessa J, et. al. 2002. The extended finite element method (xfem) for solidification problems. Int J Num Meth Eng 53:1959-1977.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fuqua C, Greenberg EP. 1995. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 118(2):269-277.Google Scholar
  24. 24.
    Fuqua C, Parsek MR, Greenberg EP. 2001. Regulation of gene expression by cell-to-cell com- munication: acyl-homoserine lactone quorum sensing. Ann Rev Genet 35:439-468.CrossRefGoogle Scholar
  25. 25.
    Gaul L, Kögl M, Wagner M. 2003. Boundary element methods for engineers and scientists. New York: Springer.MATHGoogle Scholar
  26. 26.
    Gravouil A, Moës N, Belytschko T. 2002. Non-planar 3d crack growth by the extended finite element and the level sets, II: level set update. Int J Num Meth Eng 53(11):2569-2586.CrossRefGoogle Scholar
  27. 27.
    Hermanowicz SW. 1999. Two-dimensional simulations of biofilm development: effect of external environmental conditions. Water Sci Technol 39(7): 107-114.CrossRefGoogle Scholar
  28. 28.
    Hermanowicz SW. 2001. A simple 2D biofilm model yields a variety of morphological features. Math Biosci 169:1-14.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Indekeu JO, Giuraniuc CV. 2004. Cellular automaton for bacterial towers. Phys A 336(1-2):14-26.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Ji H, Chopp D, Dolbow JE. 2002. A hybrid extended finite element/level set method for modeling phase transformations. Int J Num Meth Eng 54:1209-1233.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Ji H, Chopp D, Dolbow JE. 2002. A hybrid extended finite element/level set method for modeling phase transformations. Int J Num Meth Eng 54(8):1209-1233.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Kreft JU, Booth G, Wimpenny JWT. 1998. BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275-3287.CrossRefGoogle Scholar
  33. 33.
    Kreft JU, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM. 2001. Individual-based modeling of biofilms. Microbiology-SGM 147:2897-2912.Google Scholar
  34. 34.
    Laspidou CS, Rittmann BE. 2002. Non-steady state modeling of extracellular polymeric sub-stances, soluble microbial products, and active and inert biomass. Water Res 36:1983-1992.CrossRefGoogle Scholar
  35. 35.
    Laspidou CS, Rittmann BE. 2002. Non-steady state modeling of microbial products and active and inert biomass. Water Res 36:1983-1992.CrossRefGoogle Scholar
  36. 36.
    LeVeque R, Li Z. 1994. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Num Anal 31:1019-1044.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Li Z. 2003. An overview of the immersed interface method and its applications. Taiwan J Math 7:1-49.MATHGoogle Scholar
  38. 38.
    Lide DR, ed. 1990. CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press.Google Scholar
  39. 39.
    Mobarry BK, Wagner M, UrbainV, Rittmann BE, Stahl DA. 1996. Phylogenetic probes for analyz- ing abundance and spatial organization of nitrifying bacteria. Appl Environ Microb 62(6):2156-2162.Google Scholar
  40. 40.
    Moës N, Dolbow J, Belytschko T. 1999. A finite element method for crack growth without remeshing. Int J Num Meth Eng 46(1):131-150.MATHCrossRefGoogle Scholar
  41. 41.
    Moës N, Gravouil A, Belytschko T. 2002. Non-planar 3d crack growth by the extended finite element and the level sets, I: mechanical model. Int J Num Meth Eng 53(11):2549-2568.MATHCrossRefGoogle Scholar
  42. 42.
    Osher S, Sethian JS. 1988. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12-49.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Parsek MR. Unpublished data.Google Scholar
  44. 44.
    Pesci EC, Iglewski BH. 1997. The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5(4):132-135.CrossRefGoogle Scholar
  45. 45.
    Pesci EC, Pearson JP, Seed PC, Iglewski BH. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179(10):3127-3132.Google Scholar
  46. 46.
    Peskin CS. 1977. Numerical analysis of blood flow in the heart. J Comput Phys 25:220-252.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Peskin CS. 1981. Lecures on mathematical aspects of physiology. Lectures Appl Math 19:69-107.MathSciNetGoogle Scholar
  48. 48.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 1998. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58(1):101-116.CrossRefGoogle Scholar
  49. 49.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 1999. Discrete-differential modeling of biofilm structure. Water Sci Technol 39(7):115-122.CrossRefGoogle Scholar
  50. 50.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 2000. A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68(4):355-369.CrossRefGoogle Scholar
  51. 51.
    Piper KR, Beck von Bodman S, Farrand SK. 1993. Conjugation factor of Agrobacterium tume-faciens regulates Ti plasmid transfer by autoinduction. Nature 362:448-450.CrossRefGoogle Scholar
  52. 52.
    Pizarro G, Griffeath D, Noguera DR. 2001. Quantitative cellular automaton model for biofilms. J Environ Eng 127(9):782-789.CrossRefGoogle Scholar
  53. 53.
    Rittmann BE. 2002. Personal communication.Google Scholar
  54. 54.
    Rittmann BE, McCarty P. 2001. Environmental Biotechnology. New York: McGraw Hill.Google Scholar
  55. 55.
    Rosenfeld M, Ramsey B. 1992. Evolution of airway microbiology in the infant with cystic fibrosis: role of nonpseudomonal and pseudomonal pathogens. Semin Respir Infect 7:158-167.Google Scholar
  56. 56.
    SchaeferAL, Hanzelka BL, Parsek MR, Greenberg EP. 2000. Detection, purification and structural elucidation of acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Meth Enzymol 305:288-301.CrossRefGoogle Scholar
  57. 57.
    Sethian JA. 1996. A marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93(4):1591-1595.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Sethia JA. 1999. Fast marching methods. SIAM Rev 41(2):199-235.CrossRefMathSciNetGoogle Scholar
  59. 59.
    Stewart PS. 2003. Diffusion in biofilms. J Bacteriol 185(5):1485-1491.CrossRefGoogle Scholar
  60. 60.
    Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135-138.CrossRefGoogle Scholar
  61. 61.
    Stolarska M, Chopp DL. 2003. Modeling spiral cracking due to thermal cycling in integrated circuits. Int J Eng Sci 41(20):2381-2410.CrossRefGoogle Scholar
  62. 62.
    Stolarska M, Chopp DL, Möes N, Belytschko T. 2001. Modelling crack growth by level sets in the extended finite element method. Int J Num Meth Eng 51:943-960.MATHCrossRefGoogle Scholar
  63. 63.
    Stolarska M, Chopp DL, Moës N, Belytschko T. 2001. Modelling crack growth by level sets in the extended finite element method. Int J Num Meth Eng 51(8):943-960.MATHCrossRefGoogle Scholar
  64. 64.
    Sukumar N, Chopp DL, Moës N, Belytschko T. 2001. Modeling holes and inclusions by level sets in the extended finite element method. Comput Meth Appl Mech Eng 90(46-47):6183-6200.CrossRefGoogle Scholar
  65. 65.
    Sukumar N, Chopp DL, Moran B. 2003. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fracture Mech 70:29-48.CrossRefGoogle Scholar
  66. 66.
    Sukumar N, Chopp DL, Moran B. 2003. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fracture Mech 70(1):29-48.CrossRefGoogle Scholar
  67. 67.
    Szomolay B, Klapper I, Dockery J, Stewart PS. 2005. Adaptive response to antimicrobial agents in biofilms. Environ Microbiol 7(8):1186-1191.CrossRefGoogle Scholar
  68. 68.
    van Loosdrecht MCM, Heijnen JJ, Eberl HJ, Kreft JU, Picioreanu C. 2002. Mathematical mod-eling of biofilm structures. Antonie van Leeuwenhoek 81:245-256.CrossRefGoogle Scholar
  69. 69.
    Vaughan BL, Smith BG, Chopp DL. 2005. A comparison of the extended finite element method and the immersed interface method for elliptic equations with discontinuous coefficients and singular sources. Preprint available at http://www.esam.northwestern.edu/chopp.
  70. 70.
    Wagner GJ, Moës, N, Liu WK, Belytschko T. 2001. The extended finite element method for rigid particles in Stokes flow. Int J Num Meth Eng 51:293-313.MATHCrossRefGoogle Scholar
  71. 71.
    Wanner O, Gujer W. 1986. A multispecies biofilm model. Biotechnol Bioeng 28:314-328.CrossRefGoogle Scholar
  72. 72.
    Williamson KJ, McCarty PL. 1976.Verification studies of the biofilm model for bacterial substrate utilization. J Water Pol Control Fed 48:281-289.Google Scholar
  73. 73.
    Wimpenny JWT, Colasanti R. 1997. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22(1):1-16.CrossRefGoogle Scholar
  74. 74.
    Xavier JB, Picioreanu C, van Loosdrecht MCM. 2004. Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Sci Technol 49(11-12):177-185.Google Scholar
  75. 75.
    Zik O, Moses E. 1999. Fingering instability in combustion: an extended view. Phys. Rev. E 60(1):518-530.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David L. Chopp
    • 1
  1. 1.Department of Engineering Sciences and Applied MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations