Modeling Protein Aggregate Assembly and Structure

  • Jun-tao Guo
  • Carol K. Hall
  • Ying Xu
  • Ronald Wetzel


One might say that “protein science” got its start in the domestic arts, built around the abilities of proteins to aggregate in response to environmental stresses such as heating (boiled eggs), heating and cooling (gelatin), and pH (cheese). Characterization of proteins in the late nineteenth century likewise focused on the ability of proteins to precipitate in response to certain salts and to aggregate in response to heating. Investigations by Chick and Martin (Chick and Martin, 1910) showed that the inactivating response of proteins to heat or solvent treatment is a two-step process involving separate denaturation and precipitation steps. Monitoring the coagulation and flocculation responses of proteins to heat and other stresses remained a major approach to understanding protein structure for decades, with solubility, or susceptibility to aggregation, serving as a kind of benchmark against which results of other methods, such as viscosity, chemical susceptibility, immune activity, crystallizability, and susceptibility to proteolysis, were compared (Mirsky and Pauling, 1936;Wu, 1931). Toward the middle of the last century, protein aggregation studies were largely left behind, as improved methods allowed elucidation of the primary sequence of proteins, reversible unfolding studies, and ultimately high-resolution structures. Curiously, the field of protein science, and in particular protein folding, is now gravitating back to a closer look at protein aggregation and protein aggregates. Unfortunately, the means developed during the second half of the twentieth century for studying native, globular proteins have not proved immediately amenable to the study of aggregate structures. Great progress is being made, however, to modify classical methods, including NMR and X-ray diffraction, as well as to develop newer techniques, that together should continue to expand our picture of aggregate structure (Kheterpal and Wetzel, 2006; Wetzel, 1999).


Protein Data Bank Prion Protein Protein Aggregate Globular Protein Aggregate Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfinsen, C.B. 1973. Principles that govern the folding of protein chains. Science. 181:223–230.ADSCrossRefGoogle Scholar
  2. Baker, D., Sohl, J.L., and Agard, D.A. 1992. A protein-folding reaction under kinetic control. Nature. 356:263–265.ADSCrossRefGoogle Scholar
  3. Balbirnie, M., Grothe, R., and Eisenberg, D.S. 2001. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA. 98:2375–2380.ADSCrossRefGoogle Scholar
  4. Benyamini, H., Gunasekaran, K., Wolfson, H., and Nussinov, R. 2003. Beta2-microglobulin amyloidosis: Insights from conservation analysis and fibril modelling by protein docking techniques. J. Mol. Biol. 330:159–174.CrossRefGoogle Scholar
  5. Benzinger, T.L., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., and Meredith, S.C. 1998. Propagating structure of Alzheimer's beta-amyloid(10-35) is parallel beta-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA. 95:13407–13412.ADSCrossRefGoogle Scholar
  6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235–242.CrossRefGoogle Scholar
  7. Bhattacharyya, A.M., Thakur, A., and Wetzel, R. 2005. Polyglutamine aggregation nucleation: Thermodynamics of a highly unfavorable protein folding reaction. Proc. Natl. Acad. Sci USA. 102:15400–15405.ADSCrossRefGoogle Scholar
  8. Bitan, G., and Teplow, D.B. 2004. Rapid photochemical cross-linking—A new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37:357–364.CrossRefGoogle Scholar
  9. Blake, C.C., Geisow, M.J., Oatley, S.J., Rerat, B., and Rerat, C. 1978. Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 å. J. Mol. Biol. 121:339–356.CrossRefGoogle Scholar
  10. Blondelle, S.E., Forood, B., Houghten, R.A., and Perez-Paya, E. 1997. Polyalanine-based peptides as models for self-associated beta-pleated-sheet complexes. Biochemistry. 36:8393–8400.CrossRefGoogle Scholar
  11. Bratko, D., and Blanch, H.W. 2001. Competition between protein folding and aggregation: A three-dimensional lattice-model simulation. J. Chem. Phys. 114:561–569.ADSCrossRefGoogle Scholar
  12. Broglia, R.A., Tiana, G., Pasquali, S., Roman, H.E., and Vigezzi, E. 1998. Folding and aggregation of designed proteins. Proc. Nat. Acad. Sci. USA. 95:12930–12933.ADSCrossRefGoogle Scholar
  13. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., and Stefani, M. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416:507–511.ADSCrossRefGoogle Scholar
  14. Caughey, B., and Lansbury, P.T. 2003. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26:267–298.CrossRefGoogle Scholar
  15. Cellmer, T., Bratko, D., Prausnitz, J.M., and Blanch, H. 2005. Thermodynamics of folding and association of lattice-model proteins. J. Chem. Phys. 122:174908.ADSCrossRefGoogle Scholar
  16. Chan, H.S., and Dill, K.A. 1990. Origins of structure in globular-proteins. Proc. Nat. Acad. Sci. USA. 87:6388–6392.ADSCrossRefGoogle Scholar
  17. Chan, W., Helms, L.R., Brooks, I., Lee, G., Ngola, S., McNulty, D., Maleeff, B., Hensley, P., and Wetzel, R. 1996. Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobulin VL domain REI. Fold. Des. 1:77–89.CrossRefGoogle Scholar
  18. Chaney, M.O., Webster, S.D., Kuo, Y.M., and Roher, A.E. 1998. Molecular modeling of the Abeta1-42 peptide from Alzheimer's disease. Protein Eng. 11:761–767.CrossRefGoogle Scholar
  19. Chen. S., Ferrone, F., and Wetzel, R. 2002. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA. 99:11884–11889.ADSCrossRefGoogle Scholar
  20. Chick, H., and Martin, C.J. 1910. On the “heat coagulation” of proteins. J. Physiol. 40:404–430.Google Scholar
  21. Chowdhry, V., and Westheimer, F.H. 1979. Photoaffinity labeling of biological systems. Annu. Rev. Biochem. 48:293–325.CrossRefGoogle Scholar
  22. Cleland, J.L., Powell, M.F., and Shire, S.J. 1993. The development of stable protein formulations: A close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307–377.Google Scholar
  23. Coles, M., Bicknell, W., Watson, A.A., Fairlie, D.P., and Craik, D.J. 1998. Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry. 37:11064–11077.CrossRefGoogle Scholar
  24. Collins, S.R., Douglass, A., Vale, R.D., and Weissman, J.S. 2004. Mechanism of prion propagation: Efficient amyloid growth in the absence of oligomeric intermediates. PLoS 2:1582–1590.Google Scholar
  25. Colon, W., and Kelly, J.W. 1992. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 31:8654–8660.CrossRefGoogle Scholar
  26. Combe, N., and Frenkel, D. 2003. Phase behavior of a lattice protein model. J. Chem. Phys. 118:9015–9022.ADSCrossRefGoogle Scholar
  27. Creighton, T.E. 1992. Protein folding. Up the kinetic pathway [news; comment]. Nature. 356:194–195.ADSCrossRefGoogle Scholar
  28. De Bernardez Clark, E., Schwarz, E., and Rudolph, R. 1999. Inhibition of aggregation side reactions during in vitro. protein folding. Methods Enzymol. 309:217–236.CrossRefGoogle Scholar
  29. Del Mar, C., Greenbaum, E., Mayne, L., Englander, S.W., and Woods, V.L., Jr. 2005. Amyloid structure: alpha-synuclein studied by hydrogen exchange and mass spectrometry. Proc. Natl. Acad. Sci. USA. 102: 15477–15482.ADSCrossRefGoogle Scholar
  30. Derreumaux, P. 1999. From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential. J. Chem. Phys. 111:2301–2310.ADSCrossRefGoogle Scholar
  31. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., and Aronin, N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277:1990–1993.CrossRefGoogle Scholar
  32. Dill, K.A. 1990. Dominant forces in protein folding. Biochemistry. 29:7133–7155.CrossRefGoogle Scholar
  33. Dill, K.A., and Chan, H.S. 1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10–19.CrossRefGoogle Scholar
  34. Dima, R.I., and Thirumalai, D. 2002. Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics. Protein Sci. 11:1036–1049.CrossRefGoogle Scholar
  35. Ding, F., Borreguero, J.M., Buldyrey, S.V., Stanley, H.E., and Dokholyan, N.V. 2003. Mechanism for the alpha-helix to beta-hairpin transition. Proteins Struct. Funct. Genet. 53:220–228.CrossRefGoogle Scholar
  36. Ding, F., Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., and Shakhnovich, E.I. 2002a. Direct molecular dynamics observation of protein folding transition state ensemble. Biophys. J. 83:3525–3532.ADSCrossRefGoogle Scholar
  37. Ding, F., Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., and Shakhnovich, E.I. 2002b. Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. J. Mol. Biol. 324:851–857.CrossRefGoogle Scholar
  38. Dobson, C.M. 1999. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24:329–332.CrossRefGoogle Scholar
  39. Dobson, C.M. 2003. Protein folding and misfolding. Nature. 426:884–890.ADSCrossRefGoogle Scholar
  40. Elam, J.S., Taylor, A.B., Strange, R., Antonyuk, S., Doucette, P.A., Rodriguez, J.A., Hasnain, S.S., Hayward, L.J., Valentine, J.S., Yeates, T.O., and Hart, P.J. 2003. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat. Struct. Biol. 10:461–467.CrossRefGoogle Scholar
  41. Ferraro, D.M., Lazo, N.D., and Robertson, A.D. 2004. EX1 hydrogen exchange and protein folding. Biochemistry. 43:587–594.CrossRefGoogle Scholar
  42. Ferrone, F. 1999. Analysis of protein aggregation kinetics. Methods Enzymol. 309:256–274.CrossRefGoogle Scholar
  43. Finke, J.M., Gross, L.A., Ho, H.M., Sept, D., Zimm, B.H., and Jennings, P.A. 2000. Commitment to folded and aggregated states occurs late in interleukin-1 beta folding. Biochemistry. 39:15633–15642.CrossRefGoogle Scholar
  44. Fleming, P.J., and Rose, G.D. 2005. Conformational properties of unfolded proteins. In Protein Folding Handbook, Part I. (J. Buchner and T. Kiefhaber, Eds.). Weinheim, Wiley-VCH, pp. 710–736.CrossRefGoogle Scholar
  45. Fontana, A., Polverino de Laureto, P., De Filippis, V., Scaramella, E., and Zambonin, M. 1997. Probing the partly folded states of proteins by limited proteolysis. Fold. Des. 2:R17–26.CrossRefGoogle Scholar
  46. Giugliarelli, G., Micheletti, C., Banavar, J.R., and Maritan, A. 2000. Compactness, aggregation, and prionlike behavior of protein: A lattice model study. J. Chem. Phys. 113:5072–5077.ADSCrossRefGoogle Scholar
  47. Glickman, M.H. 2000. Getting in and out of the proteasome. Semin. Cell Dev. Biol. 11:149–158.CrossRefGoogle Scholar
  48. Go, N., and Taketomi, H. 1978. Respective roles of short- and long-range interactions in protein folding. Proc. Natl. Acad. Sci. USA. 75:559–563.ADSCrossRefGoogle Scholar
  49. Go, N., and Taketomi, H. 1979. Studies on protein folding, unfolding and fluctuations by computer simulation. III. Effect of short-range interactions. Int. J. Pept. Protein Res. 13:235–252.CrossRefGoogle Scholar
  50. Goldberg, M.E., Rudolph, R., and Jaenicke, R. 1991. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 30:2790–2797.CrossRefGoogle Scholar
  51. Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T., and Cooper, G.J. 1999. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285:33–39.CrossRefGoogle Scholar
  52. Goldsbury, C.S., Wirtz, S., Muller, S.A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. 2000. Studies on the in vitro. assembly of A beta 1-40: Implications for the search for A beta fibril formation inhibitors. J. Struct. Biol. 130:217–231.CrossRefGoogle Scholar
  53. Govaerts, C., Wille, H., Prusiner, S.B., and Cohen, F.E. 2004. Evidence for assembly of prions with left-handed beta-helices into trimers. Proc. Natl. Acad. Sci. USA. 101:8342–8347.ADSCrossRefGoogle Scholar
  54. Guo, J.T., Wetzel, R., and Xu, Y. 2004. Molecular modeling of the core of Abeta amyloid fibrils. Proteins. 57:357–364.CrossRefGoogle Scholar
  55. Gupta, P., and Hall, C.K. 1997. Effect of solvent conditions upon refolding pathways and intermediates for a simple lattice protein. Biopolymers. 42:399–409.CrossRefGoogle Scholar
  56. Gupta, P., Hall, C.K., and Voegler, A.C. 1998. Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model. Protein Sci. 7:2642–2652.CrossRefGoogle Scholar
  57. Haase-Pettingell, C.A., and King, J. 1988. Formation of aggregates from a thermolabile in vivo. folding intermediate in P22 tailspike maturation: A model for inclusion body formation. J. Biol. Chem. 263:4977–4983.Google Scholar
  58. Harper, J.D., Lieber, C.M., and Lansbury, P.T., Jr. 1997. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem. Biol. 4:951–959.CrossRefGoogle Scholar
  59. Harrison, P.M., Chan, H.S., Prusiner, S.B., and Cohen, F.E. 1999. Thermodynamics of model prions and its implications for the problem of prion protein folding. J. Mol. Biol. 286:593–606.CrossRefGoogle Scholar
  60. Harrison, P.M., Chan, H.S., Prusiner, S.B., and Cohen, F.E. 2001. Conformational propagation with prion-like characteristics in a simple model of protein folding. Protein Sci. 10:819–835.CrossRefGoogle Scholar
  61. Hartl, F.U., and Hayer-Hartl, M. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science. 295:1852–1858.ADSCrossRefGoogle Scholar
  62. Haspel, N., Zanuy, D., Ma, B., Wolfson, H., and Nussinov, R. 2005. A comparative study of amyloid fibril formation by residues 15–19 of the human calcitonin hormone: A single beta-sheet model with a small hydrophobic core. J. Mol. Biol. 345:1213–1227.CrossRefGoogle Scholar
  63. Hermeling, S., Crommelin, D.J., Schellekens, H., and Jiskoot, W. 2004. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res. 21:897–903.CrossRefGoogle Scholar
  64. Horiuchi, M., Priola, S.A., Chabry, J., and Caughey, B. 2000. Interactions between heterologous forms of prion protein: Binding, inhibition of conversion, and species barriers. Proc. Natl. Acad. Sci. USA. 97:5836–5841.ADSCrossRefGoogle Scholar
  65. Hoshino, M., Katou, H., Hagihara, Y., Hasegawa, K., Naiki, H., and Goto, Y. 2002. Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat. Struct. Biol. 9:332–336.CrossRefGoogle Scholar
  66. Hua, Q.X., Gozani, S.N., Chance, R.E., Hoffmann, J.A., Frank, B.H., and Weiss, M.A. 1995. Structure of a protein in a kinetic trap. Nat. Struct. Biol. 2:129–138.CrossRefGoogle Scholar
  67. Hubbell, W.L., Cafiso, D.S., and Altenbach, C. 2000. Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7:735–739.CrossRefGoogle Scholar
  68. Hurle, M.R., Helms, L.R., Li, L., Chan, W., and Wetzel, R. 1994. A role for destabilizing amino acid replacements in light chain amyloidosis. Proc. Natl. Acad. Sci. USA. 91:5446–5450.ADSCrossRefGoogle Scholar
  69. Ignatova, Z., and Gierasch, L.M. 2005. Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus. Biochemistry. 44:7266–7274.CrossRefGoogle Scholar
  70. Istrail, S., Schwartz, R., and King, J. 1999. Lattice simulations of aggregation funnels for protein folding. J. Comput. Biol. 6:143–162.CrossRefGoogle Scholar
  71. Iwata, K., Eyles, S.J, and Lee, J.P. 2001. Exposing asymmetry between monomers in Alzheimer's amyloid fibrils via reductive alkylation of lysine residues. J. Am. Chem. Soc. 123:6728–6729.CrossRefGoogle Scholar
  72. Jang, H.B., Hall, C.K., and Zhou, Y.Q. 2004a. Assembly and kinetic folding pathways of a tetrameric beta-sheet complex: Molecular dynamics simulations on simplified off-lattice protein models. Biophys. J. 86:31–49.CrossRefGoogle Scholar
  73. Jang, H.B., Hall, C.K., and Zhou, Y.Q. 2004b. Thermodynamics and stability of a beta-sheet complex: Molecular dynamics simulations on simplified off-lattice protein models. Protein Sci. 13:40–53.CrossRefGoogle Scholar
  74. Jaroniec, C.P., MacPhee, C.E., Bajaj, V.S., McMahon, M.T., Dobson, C.M., and Griffin, R.G. 2004. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 101:711–716.ADSCrossRefGoogle Scholar
  75. Jarrett, J.T., Costa, P.R., Griffin, R.G., and Lansbury, P.T., Jr. 1994. Models of the b protein C-terminus: Differences in amyloid structure may lead to segregation of “long” and “short” fibrils. J. Am. Chem. Soc. 116:9741–9742.CrossRefGoogle Scholar
  76. Jenkins, J., and Pickersgill, R. 2001. The architecture of parallel beta-helices and related folds. Prog. Biophys. Mol. Biol. 77:111–175.CrossRefGoogle Scholar
  77. Jimenez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M., and Saibil, H.R. 1999. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18:815–821.CrossRefGoogle Scholar
  78. Jimenez, J.L., Nettleton, E.J., Bouchard, M., Robinson, C.V., Dobson, C.M., and Saibil, H.R. 2002. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA. 99:9196–9201.ADSCrossRefGoogle Scholar
  79. Kanno, T., Yamaguchi, K., Naiki, H., Goto, Y., and Kawai, T. 2005. Association of thin filaments into thick filaments revealing the structural hierarchy of amyloid fibrils. J. Struct. Biol. 149:213–218.CrossRefGoogle Scholar
  80. Karplus, M., and McCammon, J.A. 2002. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9:646–652.CrossRefGoogle Scholar
  81. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 300:486–489.ADSCrossRefGoogle Scholar
  82. Kellermayer, M.S., Grama, L., Karsai, A., Nagy, A., Kahn, A., Datki, Z.L., and Penke, B. 2005. Reversible mechanical unzipping of amyloid beta-fibrils. J. Biol. Chem. 280:8464–8470.CrossRefGoogle Scholar
  83. Khare, S.D., Ding, F., Gwanmesia, K.N., and Dokholyan, N.V. 2005. Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLoS Comput. Biol. 1:230–235.CrossRefGoogle Scholar
  84. Kheterpal, I., Chen, M., Cook, K.D., and Wetzel, R. 2006. Structural differences in Abeta amyloid protofibrils and fibrils mapped by hydrogen exchange-mass spectrometry with on-line pratcolytic fragmentation. J. Mol. Biol. 361:785–795.CrossRefGoogle Scholar
  85. Kheterpal, I., Lashuel, H.A., Hartley, D.M., Walz, T., Lansbury, P.T., and Jr., Wetzel, R. 2003a. Abeta protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry. 42:14092–8.CrossRefGoogle Scholar
  86. Kheterpal, I., and Wetzel, R. 2006. Amyloid, prions, and other protein aggregates II. In Methods in Enzymology. (J. N. Abelson and M. I. Simon, Eds.), San Diego, Academic Press.Google Scholar
  87. Kheterpal, I., Wetzel, R., and Cook, K.D. 2003b. Enhanced correction methods for hydrogen exchange–mass spectrometric studies of amyloid fibrils. Protein Sci. 12:635–643.CrossRefGoogle Scholar
  88. Kheterpal, I., Williams, A., Murphy, C., Bledsoe, B., and Wetzel, R. 2001. Structural features of the Abeta amyloid fibril elucidated by limited proteolysis. Biochemistry. 40:11757–11767.CrossRefGoogle Scholar
  89. Kheterpal, I., Zhou, S., Cook, K.D., and Wetzel, R. 2000. Abeta amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl. Acad. Sci. USA. 97:13597–13601.ADSCrossRefGoogle Scholar
  90. Kolinski, A., Skolnick, J., and Yaris, R. 1986. Monte-Carlo simulations on an equilibrium globular protein folding model. Proc. Nat. Acad. Sci. USA. 83:7267–7271.ADSCrossRefGoogle Scholar
  91. Kopito, R.R. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524–530.CrossRefGoogle Scholar
  92. Kuntz, I.D., Crippen, G.M., Kollman, P.A., and Kimelman, D. 1976. Calculation of protein tertiary structure. J. Mol. Biol. 106:983–994.CrossRefGoogle Scholar
  93. Kuwata, K., Matumoto, T., Cheng, H., Nagayama, K., James, T.L., and Roder, H. 2003. NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proc. Natl. Acad. Sci. USA. 100:14790–14795.ADSCrossRefGoogle Scholar
  94. Kyte, J., and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.CrossRefGoogle Scholar
  95. Lakdawala, A.S., Morgan, D.M., Liotta, D.C., Lynn, D.G., and Snyder, J.P. 2002. Dynamics and fluidity of amyloid fibrils: a model of fibrous protein aggregates. J. Am. Chem. Soc. 124:15150–15151.CrossRefGoogle Scholar
  96. Lau, K.F., Dill, K.A. 1989. A lattice statistical-mechanics model of the conformational and sequence-spaces of proteins. Macromolecules. 22:3986–3997.CrossRefADSGoogle Scholar
  97. Leonhard, K., Prausnitz, J.M., and Radke, C.J. 2003. Solvent–amino acid interaction energies in 3-D-lattice MC simulations of model proteins. Aggregation thermodynamics and kinetics. Phys. Chem. Chem. Phys. 5:5291–5299.CrossRefGoogle Scholar
  98. Levin, E.G., and Santell, L. 1987. Conversion of the active to latent plasminogen activator inhibitor from human endothelial cells. Blood. 70:1090–1098.Google Scholar
  99. Levinthal, C. 1969. How to fold gratiously. Univ. Ill. Bull. 41:22–24.Google Scholar
  100. Levitt, M. 1976. Simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104:59–107.CrossRefGoogle Scholar
  101. Levitt, M., and Warshel, A. 1975. Computer-simulation of protein folding. Nature. 253:694–698.ADSCrossRefGoogle Scholar
  102. Li, L., Darden, T.A., Bartolotti, L., Kominos, D., and Pedersen, L.G. 1999. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys. J. 76:2871–2878.CrossRefGoogle Scholar
  103. Li, R., and Woodward, C. 1999. The hydrogen exchange core and protein folding. Protein Sci. 8:1571–1590.CrossRefGoogle Scholar
  104. Liwo, A., Oldziej, S., Kazmierkiewicz, R., Groth, M., Czaplewski, C. 1997. Design of a knowledge-based force field for off-lattice simulations of protein structure. Acta. Biochim. Pol. 44:527–547.Google Scholar
  105. Lynn, G.W., Heller, W.T., Mayasundari, A., Minor, K.H., and Peterson, C.B. 2005. A model for the three-dimensional structure of human plasma vitronectin from small-angle scattering measurements. Biochemistry. 44:565–574.CrossRefGoogle Scholar
  106. Ma, B., and Nussinov, R. 2002a. Molecular dynamics simulations of alanine rich beta-sheet oligomers: Insight into amyloid formation. Protein Sci. 11:2335–2350.CrossRefGoogle Scholar
  107. Ma, B., and Nussinov, R. 2002b. Stabilities and conformations of Alzheimer's beta -amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence effects. Proc. Natl. Acad. Sci. USA. 99:14126–14131.ADSCrossRefGoogle Scholar
  108. Ma, J., Sigler, P.B., Xu, Z., and Karplus, M. 2000. A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302:303–313.CrossRefGoogle Scholar
  109. Makin, O.S., Atkins, E., Sikorski, P., Johansson, J., and Serpell, L.C. 2005. Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA. 102:315–320.ADSCrossRefGoogle Scholar
  110. Marston, F.A., and Hartley, D.L. 1990. Solubilization of protein aggregates. Methods Enzymol. 182:264–276.CrossRefGoogle Scholar
  111. Martin, J.B. 1999. Molecular basis of the neurodegenerative disorders [published erratum appears in N. Engl. J. Med. 1999 Oct 28;341(18):1407]. N. Engl. J. Med. 340:1970–1980.CrossRefGoogle Scholar
  112. McCutchen, S.L., Colon, W., and Kelly, J.W. 1993. Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry. 32:12119–12127.CrossRefGoogle Scholar
  113. Means, G.E., and Feeney, R.E. 1971. Chemical Modification of Proteins. San Francisco, Holden–Day.Google Scholar
  114. Merkel, J.S., Sturtevant, J.M., and Regan, L. 1999. Sidechain interactions in parallel beta sheets: The energetics of cross-strand pairings. Struct. Fold. Des. 7:1333–1343.CrossRefGoogle Scholar
  115. Merlini, G., and Bellotti, V. 2003. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349:583–596.CrossRefGoogle Scholar
  116. Mirsky, A.E., and Pauling, L. 1936. On the structure of native, denatured and coagulated protein. Proc. Natl. Acad. Sci. USA. 22:439–447.ADSCrossRefGoogle Scholar
  117. Miyazawa, S., and Jernigan, R.L. 1985. Estimation of effective interresidue contact energies from protein crystal-structures—Quasi-chemical approximation. Macromolecules. 18:534–552.CrossRefADSGoogle Scholar
  118. Monti, M., Principe, S., Giorgetti, S., Mangione, P., Merlini, G., Clark, A., Bellotti, V., Amoresano, A., and Pucci, P. 2002. Topological investigation of amyloid fibrils obtained from beta2-microglobulin. Protein Sci 11:2362–2369.CrossRefGoogle Scholar
  119. Morimoto, A., Irie, K., Murakami, K., Masuda, Y., Ohigashi, H., Nagao, M., Fukuda, H., Shimizu, T., and Shirasawa, T. 2004. Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. J. Biol. Chem. 279:52781–52788.CrossRefGoogle Scholar
  120. Muchowski, P.J., Schaffar, G., Sittler, A., Wanker, E.E., Hayer-Hartl, M.K., and Hartl, F.U. 2000. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA. 97:7841–7846.ADSCrossRefGoogle Scholar
  121. Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., and Eisenberg, D. 2005. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 435:773–778.ADSCrossRefGoogle Scholar
  122. Nguyen, H.D., Hall, C.K. 2002. Effect of rate of chemical or thermal renaturation on refolding and aggregation of a simple lattice protein. Biotechnol. Bioeng. 80:823–834.CrossRefGoogle Scholar
  123. Nguyen, H.D., and Hall, C.K. 2004a. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. USA. 101:16180–16185.ADSCrossRefGoogle Scholar
  124. Nguyen, H.D., and Hall, C.K. 2004b. Phase diagrams describing fibrillization by polyalanine peptides. Biophys. J. 87:4122–4134.CrossRefGoogle Scholar
  125. Nguyen, H.D., Hall, C.K. 2005. Kinetics of fibril formation by polyalanine peptides. J. Biol. Chem. 280:9074–9082.CrossRefGoogle Scholar
  126. Nguyen, H.D., Marchut, A.J., and Hall, C.K. 2004. Solvent effects on the conformational transition of a model polyalanine peptide. Protein Sci. 13:2909–2924.CrossRefGoogle Scholar
  127. Nilsson, M.R. 2004. Techniques to study amyloid fibril formation in vitro. Methods. 34:151–160.CrossRefGoogle Scholar
  128. Oberg, K., Chrunyk, B.A., Wetzel, R., and Fink, A. 1994. Native-like secondary structure in interleukin-1β inclusion bodies by attenuated total reflectance FTIR. Biochemistry. 33:2628–2634.CrossRefGoogle Scholar
  129. O'Nuallain, B., Shivaprasad, S., Kheterpal, I, and Wetzel, R. 2005. Thermodynamics of Aβ(1–40) amyloid fibril formation. Biochemistry 44:12709–12718.CrossRefGoogle Scholar
  130. O'Nuallain, B., Williams, A.D., Westermark, P., and Wetzel, R. 2004. Seeding specificity in amyloid growth induced by heterologous fibrils. J. Biol. Chem. 279:17490–17499.CrossRefGoogle Scholar
  131. Patro, S.Y., and Przybycien, T.M. 1994. Simulations of kinetically irreversible protein aggregate structure. Biophys J. 66:1274–1289.CrossRefGoogle Scholar
  132. Patro, S.Y., Przybycien, T.M., and Isermann, H.P. 1996. Simulations of reversible protein-aggregate and crystal structure. Abstr. Pap. Am. Chem. Soc. 211:176-Biot.Google Scholar
  133. Perez-Paya, E., Forood, B., Houghten, R.A., and Blondelle, S.E. 1996. Structural characterization and 5′-mononucleotide binding of polyalanine beta-sheet complexes. J. Mol. Recognit. 9:488–493.CrossRefGoogle Scholar
  134. Perutz, M.F., Finch, J.T., Berriman, J., and Lesk, A. 2002. Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA. 99:5591–5595.ADSCrossRefGoogle Scholar
  135. Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F., and Tycko, R. 2002. A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA. 99:16742–16747.ADSCrossRefGoogle Scholar
  136. Petkova, A.T, Leapman, R.D., Guo, Z., Yau, W.M., Mattson, M.P., and Tycko, R. 2005. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307:262–265.ADSCrossRefGoogle Scholar
  137. Petrucelli, L., and Dawson, T.M. 2004. Mechanism of neurodegenerative disease: Role of the ubiquitin proteasome system. Ann. Med. 36:315–320.CrossRefGoogle Scholar
  138. Polverino de Laureto, P., Taddei, N., Frare, E., Capanni, C., Costantini, S., Zurdo, J., Chiti, F., Dobson, C.M., and Fontana, A. 2003. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J. Mol. Biol. 334:129–141.CrossRefGoogle Scholar
  139. Prouty, W.F., Karnovsky, M.J., Goldberg, A.L. 1975. Degradation of abnormal proteins in Escherichia coli.: Formation of protein inclusions in cells exposed to amino acid analogs. J. Biol. Chem. 250:1112–1122.Google Scholar
  140. Rapaport, D.C. 1978. Molecular dynamics simulation of polymer chains with excluded volume. J. Phys. A-Math. Gen. 11:L213–L217.ADSCrossRefGoogle Scholar
  141. Rapaport, D.C. 1979. Molecular dynamics study of a polymer-chain in solution. J. Chem. Phys. 71:3299–3303.ADSCrossRefGoogle Scholar
  142. Richardson, J.S., and Richardson, D.C. 2002. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA. 99:2754–2759.ADSCrossRefGoogle Scholar
  143. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wuthrich, K. 1996. NMR structure of the mouse prion protein domain PrP(121–321). Nature. 382:180–182.ADSCrossRefGoogle Scholar
  144. Saper, M.A., Bjorkman, P.J., and Wiley, D.C. 1991. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J. Mol. Biol. 219:277–319.CrossRefGoogle Scholar
  145. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., and Wanker, E.E. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro. and in vivo. Cell. 90:549–558.CrossRefGoogle Scholar
  146. Schiffer, M., Chang, C.H., and Stevens, F.J. 1985. Formation of an infinite beta-sheet arrangement dominates the crystallization behavior of lambda-type antibody light chains. J. Mol. Biol. 186:475–478.CrossRefGoogle Scholar
  147. Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., Moslehi, J.J., Serpell, L., Arnsdorf, M.F., and Lindquist, S.L. 2000. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 289:1317–1321.ADSCrossRefGoogle Scholar
  148. Sharma, D., Shinchuk, L., Inouye, H., Wetzel, R., and Kirschner, D.A. 2005. Polyglutamine homopolymers having 8–45 repeats form slablike βcrystallite assemblies. Proteins. Struct. Funct. Bioinf. 61:398–411.CrossRefGoogle Scholar
  149. Shire, S.J., Shahrokh, Z., and Liu, J. 2004. Challenges in the development of high protein concentration formulations. J. Pharm. Sci. 93:1390–1402.CrossRefGoogle Scholar
  150. Shivaprasad, S., and Wetzel, R. 2004. An intersheet packing interaction in Aβ fibrils mapped by disulfide crosslinking. Biochemistry. 43:15310–15317.CrossRefGoogle Scholar
  151. Shivaprasad, S., and Wetzel, R. 2006. Scanning cysteine mutagenesis analysis of Aβ(1–40) amyloid fibrils. J. Biol. Chem. 281:993–1000.CrossRefGoogle Scholar
  152. Skolnick, J., and Kolinski, A. 1990. Simulations of the folding of a globular protein. Science. 250:1121–1125.ADSCrossRefGoogle Scholar
  153. Smith, A.V., Hall, C.K. 2001a. Alpha-helix formation: Discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins. 44:344–360.CrossRefGoogle Scholar
  154. Smith, A.V., and Hall, C.K. 2001b. Assembly of a tetrameric alpha-helical bundle: Computer simulations on an intermediate-resolution protein model. Proteins. 44:376–391.CrossRefGoogle Scholar
  155. Smith, A.V., and Hall, C.K. 2001c. Protein refolding versus aggregation: Computer simulations on an intermediate-resolution protein model. J. Mol. Biol. 312:187–202.CrossRefGoogle Scholar
  156. Stanger, H.E., Syud, F.A., Espinosa, J.F., Giriat, I., Muir, T., and Gellman, S.H. 2001. Length-dependent stability and strand length limits in antiparallel beta -sheet secondary structure. Proc. Natl. Acad. Sci. USA. 98:12015–12020.ADSCrossRefGoogle Scholar
  157. Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R.W., and Rosch, P. 1995. Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease. Eur. J. Biochem. 233:293–298.CrossRefGoogle Scholar
  158. Stine, W.B., Jr., Snyder, S.W., Ladror, U.S., Wade, W.S., Miller, M.F., Perun, T.J., Holzman, T.F., and Krafft, G.A. 1996. The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. J. Protein. Chem. 15:193–203.CrossRefGoogle Scholar
  159. Sunde, M., and Blake, C. 1997. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein. Chem. 50:123–159.CrossRefGoogle Scholar
  160. Sunde, M., and Blake, C.C. 1998. From the globular to the fibrous state: Protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31:1–39.CrossRefGoogle Scholar
  161. Takada, S., Luthey-Schulten, Z., and Wolynes, P.G. 1999. Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer. J. Chem. Phys. 110:11616–11629.ADSCrossRefGoogle Scholar
  162. Taketomi, H., Ueda, Y., and Go, N. 1975. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein. Res. 7:445–459.CrossRefGoogle Scholar
  163. Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. 2004. Conformational variations in an infectious protein determine prion strain differences. Nature. 428:323–328.ADSCrossRefGoogle Scholar
  164. Tanaka, S., and Scheraga, H.A. 1976. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules. 9:945–950.CrossRefADSGoogle Scholar
  165. Thakur, A., Wetzel, R. 2002. Mutational analysis of the structural organization of polyglutamine aggregates. Proc. Natl. Acad. Sci. USA. 99:17014–17019.ADSCrossRefGoogle Scholar
  166. Toma, L., and Toma, S. 2000. A lattice study of multimolecular ensembles of protein models. Effect of sequence on the final state: Globules, aggregates, dimers, fibrillae. Biomacromolecules. 1:232–238.CrossRefGoogle Scholar
  167. Torok, M., Milton, S., Kayed, R., Wu, P., McIntire, T., Glabe, C.G., and Langen, R. 2002. Structural and dynamic features of Alzheimer's Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277:40810–40815.CrossRefGoogle Scholar
  168. Turner, G.C., and Varshavsky, A. 2000. Detecting and measuring cotranslational protein degradation in vivo. Science. 289:2117–2120.ADSCrossRefGoogle Scholar
  169. Tycko, R. 2000. Solid-state NMR as a probe of amyloid fibril structure. Curr. Opin. Chem. Biol. 4:500–506.CrossRefGoogle Scholar
  170. Urbanc, B., Cruz, L., Ding, F., Sammond, D., Khare, S., Buldyrev, S.V., Stanley, H.E., and Dokholyan, N.V. 2004a. Molecular dynamics simulation of amyloid beta dimer formation. Biophys. J. 87:2310–2321.CrossRefADSGoogle Scholar
  171. Urbanc, B., Cruz, L., Yun, S., Buldyrev, S.V., Bitan, G., Teplow, D.B., and Stanley, H.E. 2004b. In silico. study of amyloid beta-protein folding and oligomerization. Proc. Natl. Acad. Sci. USA. 101:17345–17350.ADSCrossRefGoogle Scholar
  172. Vigouroux, S., Briand, M., and Briand, Y. 2004. Linkage between the proteasome pathway and neurodegenerative diseases and aging. Mol. Neurobiol. 30:201–221.CrossRefGoogle Scholar
  173. Wallqvist, A., and Ullner, M. 1994. A simplified amino-acid potential for use in structure predictions of proteins. Proteins-Struct. Funct. Genet. 18:267–280.CrossRefGoogle Scholar
  174. Wang, S.S., Tobler, S.A., Good, T.A., and Fernandez, E.J. 2003. Hydrogen exchange-mass spectrometry analysis of beta-amyloid peptide structure. Biochemistry. 42:9507–9514.CrossRefGoogle Scholar
  175. Wetzel, R. 1992. Protein aggregation in vivo.: Bacterial inclusion bodies and mammalian amyloid. In Stability of Protein Pharmaceuticals: In Vivo Pathways of Degradation and Strategies for Protein Stabilization. (T. J. Ahern and M. C. Manning, Eds.). New York, Plenum Press, pp. 43–88.Google Scholar
  176. Wetzel, R. 1994. Mutations and off-pathway aggregation. Trends Biotechnol. 12:193–198.CrossRefGoogle Scholar
  177. Wetzel, R. 1999. Amyloid, prions, and other protein aggregates. Methods. Enzymol. 309:820. (J. N. Abelson and M. I. Simon, Eds.), Vol. 309, pp. 820. Academic Press, San Diego, CA.Google Scholar
  178. Wetzel, R. 2002. Ideas of order for amyloid fibril structure. Structure. 10:1031–1036.CrossRefGoogle Scholar
  179. Wetzel, R. 2005. Protein folding and aggregation in the expanded polyglutamine repeat diseases. In The Protein Folding Handbook, Part II. (J. Buchner and T. Kiefhaber, Eds.). Weinheim, Wiley-VCH, pp. 1170–1214.Google Scholar
  180. Wetzel, R., and Goeddel, D.V. 1983. Synthesis of polypeptides by recombinant DNA methods. In The Peptides: Analysis, Synthesis, Biology. (J. Meienhofer and E. Gross, Eds.). New York, Academic Press, Vol. 5, pp. 1–64.Google Scholar
  181. Whittemore, N.A., Mishra, R., Kheterpal, I., Williams, A.D., Wetzel, R., and Serpersu, E.H. 2005. Hydrogen-deuterium (H/D) exchange mapping ofAβ1-40 amyloid fibril secondary structure using NMR spectroscopy. Biochemistry. 44:4434–4441.CrossRefGoogle Scholar
  182. Wille, H., Michelitsch, M.D., Guenebaut, V., Supattapone, S., Serban, A., Cohen, F.E., Agard, D.A., and Prusiner, S.B. 2002. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA. 99:3563–3568.ADSCrossRefGoogle Scholar
  183. Williams, A., Portelius, E., Kheterpal, I., Guo, J.-T., Cook, K., Xu, Y., and Wetzel, R. 2004. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335:833–842.CrossRefGoogle Scholar
  184. Williams, A.D., Sega, M., Chen, M., Kheterpal, I., Geva, M., Berthelier, V., Kaleta, D.T., Cook, K.D., and Wetzel, R. 2005. Structural properties of Aβ protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA. 102:7115–7120.ADSCrossRefGoogle Scholar
  185. Williams, A.D., Shivaprasad, S., and Wetzel, R. 2006. Alanine scanning mutagenesis of Aβ(1–40) amyloid fibril stability. J. Mol. Biol. 357:1283–1294.CrossRefGoogle Scholar
  186. Wu, H. 1931. Studies on denaturation of proteins. XII. A theory of denaturation. Chin. J. Physiol. 5:321–344.Google Scholar
  187. Yamaguchi, K., Takahashi, S., Kawai, T., Naiki, H., and Goto, Y. 2005. Seeding-dependent propagation and maturation of amyloid fibril conformation. J. Mol. Biol. 352:952–960.CrossRefGoogle Scholar
  188. Xu, D., Baburaj, K., Peterson, C.B., and Xu, Y. 2001. Model for the three-dimensional structure of vitronectin: Predictions for the multi-domain protein from threading and docking. Proteins. 44:312–320.CrossRefGoogle Scholar
  189. Xu, Z., Horwich, A.L., and Sigler, P.B. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388:741–750.ADSCrossRefGoogle Scholar
  190. Zanuy, D., Gunasekaran, K., Ma, B., Tsai, H.H., Tsai, C.J., and Nussinov, R. 2004. Insights into amyloid structural formation and assembly through computational approaches. Amyloid. 11:143–161.CrossRefGoogle Scholar
  191. Zanuy, D., Ma, B., and Nussinov, R. 2003. Short peptide amyloid organization: Stabilities and conformations of the islet amyloid peptide NFGAIL. Biophys. J. 84:1884–1894.CrossRefADSGoogle Scholar
  192. Zanuy, D., and Nussinov, R. 2003. The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22–27 and 22–29. J. Mol. Biol. 329:565–584.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jun-tao Guo
  • Carol K. Hall
  • Ying Xu
  • Ronald Wetzel

There are no affiliations available

Personalised recommendations