Skip to main content

Abstract

Proteins are linear chains that fold into characteristic shapes and features. To understand proteins and protein folding, we try to represent the protein molecule in such a way that its features are easy to see and manipulate. A simple representation facilitates algorithm design for structure prediction. The simplicity of the threestate character string representation of secondary structure is part of the reason for secondary structure prediction receiving so much attention early in the era of computational biology. One-dimensional strings are easily understood, parsed, mined, and manipulated. But secondary structure alone does not tell us enough about the overall shapes and features of a protein.We need a simpleway to represent the overall tertiary structure of a protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, D. 2000. A surprising simplicity to protein folding. Nature 405:39–42.

    Article  ADS  Google Scholar 

  • Vendruscolo, M., Najmanovich, R., and Domany, E. 1999. Protein folding in contact map space. Phys. Rev. Lett. 82:656–659.

    Article  ADS  Google Scholar 

  • Aloy, P., Stark, A., Hadley, C., and Russell, R.B. 2003. Predictions without templates: New folds, secondary structure, and contacts in CASP5. Proteins 53 (Suppl. 6):436–456.

    Article  Google Scholar 

  • Altschuh, D., Lesk, A.M., Bloomer, A.C., and Klug, A. 1987. Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. J. Mol. Biol. 193:693–707.

    Article  Google Scholar 

  • Aszodi, A., Gradwell, M.J., and Taylor, W.R. 1995. Global fold determination from a small number of distance restraints. J. Mol. Biol. 251:308–326.

    Article  Google Scholar 

  • Berrera, M., Molinari, H., and Fogolari, F. 2003. Amino acid empirical contact energy definitions for fold recognition in the space of contact maps. BMC Bioinformatics 4:8.

    Article  Google Scholar 

  • Bystroff, C., and Shao, Y. 2003. Modeling protein folding pathways. In Practical Bioinformatics (J.M. Bujnicki, Ed.). Berlin, Springer-Verlag.

    Google Scholar 

  • Bystroff, C., Thorsson, V., and Baker, D. 2000. HMMSTR: A hidden Markov model for local sequence–structure correlations in proteins. J. Mol. Biol. 301:173–190.

    Article  Google Scholar 

  • Chavez, L.L., Onuchic, J.N., and Clementi, C. 2004. Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates. J. Am. Chem. Soc. 126:8426–8432.

    Article  Google Scholar 

  • Cheng, J., Randall, A., Sweredoski, M., and Baldi, P. 2005. SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res. 33: 72–76.

    Article  Google Scholar 

  • Dodge, C., Schneider, R., and Sander, C. 1998. The HSSP database of protein structure—sequence alignments and family profiles. Nucleic Acids Res. 26:313–315.

    Article  Google Scholar 

  • Dosztanyi, Z., Fiser, A., and Simon, I. 1997. Stabilization centers in proteins: Identification, characterization and predictions. J. Mol. Biol. 272:597–612.

    Article  Google Scholar 

  • Eisenhawer, M., Cattarinussi, S., Kuhn, A., and Vogel, H. 2001. Fluorescence resonance energy transfer shows a close helix—helix distance in the transmembrane M13 procoat protein. Biochemistry 40:12321–12328.

    Article  Google Scholar 

  • Enosh, A., Fleishman, S.J., Ben-Tal, N., and Halperin, D. 2004. Assigning transmembrane segments to helices in intermediate-resolution structures. Bioinformatics 20 (Suppl. 1):I122–I129.

    Article  Google Scholar 

  • Fariselli, P., and Casadio, R. 1999. A neural network based predictor of residue contacts in proteins. Protein Eng. 12:15–21.

    Article  Google Scholar 

  • Fariselli, P., Olmea, O., Valencia, A., and Casadio, R. 2001a. Prediction of contact maps with neural networks and correlated mutations. Protein Eng. 14:835–843.

    Article  Google Scholar 

  • Fariselli, P., Olmea, O., Valencia, A., and Casadio, R. 2001b. Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations. Proteins Suppl. 5:157–62.

    Article  Google Scholar 

  • Göbel, U., Sander, C., Schneider, R., and Valencia, A. 1994. Correlated mutations and residue contacts in proteins. Proteins 18:309–317.

    Article  Google Scholar 

  • Graña, O., Baker, D., Maccallum, R.M., Meiler, J., Punta, M., Rost, B., Tress, M.L., and Valencia, A. 2005. CASP6 assessment of contact prediction. Proteins [Epub 26 Sep 2005].

    Google Scholar 

  • Hamilton, N., Burrage, K., Ragan, M.A., and Huber, T. 2004. Protein contact prediction using patterns of correlation. Proteins 56:679–684.

    Article  Google Scholar 

  • Havel, T.F., Crippen, G.M., and Kuntz, I.D. 1979. Effects of distance constraints on macromolecular conformation. II. Simulation of experimental results and theoretical predictions. Biopolymers 18:73–81.

    Article  Google Scholar 

  • Hu, J., Shen, X., Shao, Y., Bystroff, C., and Zaki, M.J. 2002. Mining protein contact maps. BIOKDD 2002, Edmonton, Canada.

    Google Scholar 

  • Huang, E.S., Subbiah, S., and Levitt, M. 1995. Recognizing native folds by the arrangement of hydrophobic and polar residues. J. Mol. Biol. 252:709–720.

    Article  Google Scholar 

  • Jones, D.T. 1999. Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol. 292:195–202.

    Article  Google Scholar 

  • Kleinjung, J., Romein, J., Lin, K., and Heringa, J. 2004. Contact-based sequence alignment. Nucleic Acids Res. 32:2464–2473.

    Article  Google Scholar 

  • Koh, I.Y., Eyrich, V.A., Marti-Renom, M.A., Przybylski, D., Madhusudhan, M.S., Eswar, N., Grana, O., Pazos, F., Valencia, A., Sali, A., and Rost, B. 2003. EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31:3311–3315.

    Article  Google Scholar 

  • Kraulis, P.J. 1991. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. App. Crystallogr. 24:946–950.

    Article  Google Scholar 

  • Kuznetsov, I.B., and Rackovsky, S. 2004. Class-specific correlations between protein folding rate, structure-derived, and sequence-derived descriptors. Proteins 54:333–334.

    Article  Google Scholar 

  • Lichtarge, O., Bourne, H.R., and Cohen, F.E. 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257:342–358.

    Article  Google Scholar 

  • Lin, K., Kleinjung, J., Taylor, W., and Heringa, J. 2003. Testing homology with CAO: A contact-based Markov model of protein evolution. Comp. Biol. Chem. 27:93–102.

    Article  MATH  Google Scholar 

  • Lund, O., Frimand, K., Gorodkin, J., Bohr, H., Bohr, J., Hansen, J., and Brunak, S. 1997. Protein distance constraints predicted by neural networks and probability density functions. Protein Eng. 10:1241–1248.

    Article  Google Scholar 

  • MacCallum, R.M. 2004. Striped sheets and protein contact prediction. Bioinformatics 20(Suppl. 1):I224–I231.

    Article  Google Scholar 

  • Maiorov, V.N., and Crippen, G.M. 1992. Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227:876–888.

    Article  Google Scholar 

  • McGuffin, L.J., Bryson, K., and Jones, D.T. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16:404–405.

    Article  Google Scholar 

  • McLachlan, A.D. 1971. Tests for comparing related amino-acid sequences. Cytochrome c and cytochrome c 551. J. Mol. Biol. 61:409–424.

    Article  Google Scholar 

  • Michael, T.S., and Quint, T. 1999. Sphere of influence graphs in general metric spaces. Math. Comput. Model. 29:45–53.

    Article  MATH  MathSciNet  Google Scholar 

  • Michalopoulos, I., Torrance, G.M., Gilbert, D.R., and Westhead, D.R. 2004. TOPS: An enhanced database of protein structural topology. Nucleic Acids Res. 32:D251–D254.

    Article  Google Scholar 

  • Mirny, L., and Domany, E. 1996. Protein fold recognition and dynamics in the space of contact maps. Proteins 26:391–410.

    Article  Google Scholar 

  • Monge, A., Friesner, R.A., and Honig, B. 1994. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Proc. Natl. Acad. Sci. USA 91:5027–5029.

    Article  ADS  Google Scholar 

  • Moult, J., Fidelis, K., Zemla, A., and Hubbard, T. 2003. Critical assessment of methods of protein structure prediction (CASP)—round V. Proteins 53 (Suppl. 6):334–339.

    Article  Google Scholar 

  • Neher, E. 1994. How frequent are correlated changes in families of protein sequences? Proc. Natl. Acad. Sci. USA 91:98–102.

    Article  ADS  Google Scholar 

  • Olmea, O., and Valencia, A. 1997. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des. 2:S25–S32.

    Article  Google Scholar 

  • Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., and Thornton, J.M. 1997. CATH—A hierarchic classification of protein domain structures. Structure 5:1093–1108.

    Article  Google Scholar 

  • Park, K., Vendruscolo, M., and Domany, E. 2000. Toward an energy function for the contact map representation of proteins. Proteins 40:237–248.

    Article  Google Scholar 

  • Pazos, F., Helmer-Citterich, M., Ausiello, G., and Valencia, A. 1997. Correlated mutations contain information about protein—protein interaction. J. Mol. Biol. 271:511–523.

    Article  Google Scholar 

  • Plaxco, K.W., Simons, K.T., and Baker, D. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277:985–994.

    Article  Google Scholar 

  • Pollastri, G., and Baldi, P. 2002. Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics 18(Suppl. 1):S62–S70.

    Google Scholar 

  • Porto, M., Bastolla, U., Roman, H.E., and Vendruscolo, M. 2004. Reconstruction of protein structures from a vectorial representation. Phys. Rev. Lett. 92:218101–218104.

    Article  ADS  Google Scholar 

  • Punta, M., and Rost, B. 2005. Protein folding rates estimated from contact predictions. J. Mol. Biol. 348:507–512.

    Article  Google Scholar 

  • Rabiner, L.R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77:257–286.

    Article  Google Scholar 

  • Rodionov, M.A., and Johnson, M.S. 1994. Residue—residue contact substitution probabilities derived from aligned three-dimensional structures and the identification of common folds. Protein Sci. 3:2366–2377.

    Article  Google Scholar 

  • Saitoh, S., Nakai, T., and Nishikawa, K. 1993. A geometrical constraint approach for reproducing the native backbone conformation of a protein. Proteins 15:191–204.

    Article  Google Scholar 

  • Shao, Y., and Bystroff, C. 2003. Predicting interresidue contacts using templates and pathways. Proteins 53(Suppl. 6):497–502.

    Article  Google Scholar 

  • Shindyalov, I.N., Kolchanov, N.A., and Sander, C. 1994. Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng. 7:349–358.

    Article  Google Scholar 

  • Singer, M.S., Vriend, G., and Bywater, R.P. 2002. Prediction of protein residue contacts with a PDB-derived likelihood matrix. Protein Eng. 15:721–725.

    Article  Google Scholar 

  • Sippl, M.J. 1990. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213:859–883.

    Article  Google Scholar 

  • Skolnick, J., Kolinski, A., and Ortiz, A.R. 1997. MONSSTER: A method for folding globular proteins with a small number of distance restraints. J. Mol. Biol. 265:217–241.

    Article  Google Scholar 

  • Tanaka, S., and Scheraga, H.A. 1976. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9:945–950.

    Article  ADS  Google Scholar 

  • Taylor, W.R., and Hatrick, K. 1994. Compensating changes in protein multiple sequence alignments. Protein Eng. 7:341–348.

    Article  Google Scholar 

  • Thomas, D.J., Casari, G., and Sander, C. 1996. The prediction of protein contacts from multiple sequence alignments. Protein Eng. 9:941–948.

    Article  Google Scholar 

  • Vendruscolo, M., and Domany, E. 1998. Efficient dynamics in the space of contact maps. Fold Des. 3:329–336.

    Article  Google Scholar 

  • Vendruscolo, M., Kussell, E., and Domany, E. 1997. Recovery of protein structure from contact maps. Fold Des. 2:295–306.

    Article  Google Scholar 

  • Wako, H., and Scheraga, H.A. 1982. Visualization of the nature of protein folding by a study of a distance constraint approach in two-dimensional models. Biopolymers 21:611–632.

    Article  Google Scholar 

  • Yuan, X., and Bystroff, C. 2005. Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins. Bioinformatics 27:1010–1019.

    Google Scholar 

  • Zaki, M.J., Shan, J., and Bystroff, C. 2000. Mining residue contacts in proteins using local structure predictions. Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering, Arlington, VA.

    Google Scholar 

  • Zhang, C., and Kim, S.H. 2000. Environment-dependent residue contact energies for proteins. Proc. Natl. Acad. Sci. USA 97:2550–2555.

    Article  ADS  Google Scholar 

  • Zhao, Y., and Karypis, G. 2003. Prediction of contact maps using support vector machines. BIBE 2003, Bethesda, MD. IEEE Computer Society, pp. 26–36.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Yuan, X., Bystroff, C. (2007). Protein Contact Map Prediction. In: Xu, Y., Xu, D., Liang, J. (eds) Computational Methods for Protein Structure Prediction and Modeling. BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68372-0_8

Download citation

Publish with us

Policies and ethics