Computation of Protein Geometry and Its Applications: Packing and Function Prediction

  • Jie Liang


Three-dimensional atomic structures of protein molecules provide rich information for understanding how these working molecules of a cell carry out their biological functions. With the amount of solved protein structures rapidly accumulating, computation of geometric properties of protein structure becomes an indispensable component in studies of modern biochemistry and molecular biology. Before we discuss methods for computing the geometry of protein molecules, we first briefly describe how protein structures are obtained experimentally.


Voronoi Diagram Delaunay Triangulation Voronoi Cell Molecular Surface Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artymiuk, P.J., Poirrette, A.R., Grindley, H.M., Rice, D., and Willett, P. 1994. A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structure. J. Mol. Biol. 243:327–344.CrossRefGoogle Scholar
  2. Bader, R. 1994. Atoms in Molecules: A Quantum Theory. London, Oxford University Press.Google Scholar
  3. Ban, Y., Edelsbrunner, H., and Rudolph, J. 2004. Interface surfaces for protein—protein complexes. In: RECOMB, pp. 205–212.Google Scholar
  4. Binkowski, T.A., Adamian, L., and Liang, J. 2003a. Inferring functional relationship of proteins from local sequence and spatial surface patterns. J. Mol. Biol. 332:505–526.CrossRefGoogle Scholar
  5. Binkowski, T., Freeman, P., and Liang, J. 2004. pvSOAR: Detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Res. 32:W555–W558.CrossRefGoogle Scholar
  6. Binkowski, T., Joachimiak, A., and Liang, J. 2005. Protein surface analysis for function annotation in high-throughput structural genomics pipeline. Protein Sci. 14:2972–2981.CrossRefGoogle Scholar
  7. Binkowski, T.A., Naghibzadeh, S., and Liang, J. 2003b. CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Res. 31:3352–3355.CrossRefGoogle Scholar
  8. Bondi, A. 1964. VDW volumes and radii. J. Phys. Chem. 68:441–451.CrossRefGoogle Scholar
  9. Chakravarty, S., Bhinge, A., and Varadarajan, R. 2002. A procedure for detection and quantitation of cavity volumes in proteins. Application to measure the strength of the hydrophobic driving force in protein folding. J. Biol. Chem. 277:31345–31353.CrossRefGoogle Scholar
  10. Connolly, M.L. 1983. Analytical molecular surface calculation. J. Appl. Crystallogr. 16:548–558.CrossRefGoogle Scholar
  11. Crippen, G.M., and Havel, T.F. 1988. Distance Geometry and Molecular Conformation. New York, John Wiley & Sons.MATHGoogle Scholar
  12. Edelsbrunner, H. 1995. The union of balls and its dual shape. Discrete Comput. Geom. 13:415–440.MATHCrossRefMathSciNetGoogle Scholar
  13. Edelsbrunner, H. 2001. Geometry and Topology for Mesh Generation. London, Cambridge University Press.MATHCrossRefGoogle Scholar
  14. Edelsbrunner, H., Facello, M., Fu, P., and Liang, J. 1995. Measuring proteins and voids in proteins. In Proc. 28th Ann. Hawaii Int. Conf. System Sciences. Los Alamitos, CA, IEEE Computer Scociety Press, Vol. 5, pp. 256–264.Google Scholar
  15. Edelsbrunner, H., Facello, M., and Liang, J. 1998. On the definition and the construction of pockets in macromolecules. Discrete Appl. Math. 88:18–29.CrossRefMathSciNetGoogle Scholar
  16. Edelsbrunner, H., and Mücke, E. 1994. Three-dimensional alpha shapes. ACM Trans. Graphics 13:43–72.MATHCrossRefGoogle Scholar
  17. Edelsbrunner, H., and Shah, N. 1996. Incremental topological flipping works for regular triangulations. Algorithmica 15:223–241.MATHMathSciNetCrossRefGoogle Scholar
  18. Finney, J.L. 1975. Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J. Mol. Biol. 96:721–732.CrossRefGoogle Scholar
  19. Fischer, D., Norel, R., Wolfson, H., and Nussinov, R. 1993. Surface motifs by a computer vision technique: Searches, detection, and implications for protein—ligand recognition. Proteins Struct. Funct. Genet. 16:278–292.CrossRefGoogle Scholar
  20. Gellatly, B.J., and Finney, J. 1982. Calculation of protein volumes: An alternative to the Voronoi procedure. J. Mol. Biol. 161:305–322.CrossRefGoogle Scholar
  21. Gerstein, M., and Richards, F.M. 1999. Protein Geometry: Distances, Areas, and Volumes. International Union of Crystallography, Vol. F, Chapter 22.Google Scholar
  22. Glaser, F., Pupko, T., Paz, I., Bell, R., Shental, D., Martz, E., and Ben-Tal, N. 2003. Consurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164.CrossRefGoogle Scholar
  23. Goede, A., Preissner, R., and Frommel, C. 1997. Voronoi cell: New method for allocation of space among atoms: Elimination of avoidable errors in calculation of atomic volume and density. J. Comput. Chem. 18:1113–1123.CrossRefGoogle Scholar
  24. Guibas, L., and Stolfi, J. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graphics 4:74–123.MATHCrossRefGoogle Scholar
  25. Harpaz, Y., Gerstein, M., and Chothia, C. 1994. Volume changes on protein folding. Structure 2:641–649.CrossRefGoogle Scholar
  26. Holm, L., and Sander, C. 1997. New structure: Novel fold? Structure 5:165–171.CrossRefGoogle Scholar
  27. Hu, C., Li, X., and Liang, J. 2004. Developing optimal nonlinear scoring function for protein design. Bioinformatics 20:3080–3098.CrossRefGoogle Scholar
  28. Kleinberg, J. 2004. Efficient algorithms for protein sequence design and the analysis of certain evolutionary fitness landscapes. In RECOMB, pp. 205–212.Google Scholar
  29. Kratky, K.W. 1981. Intersecting disks (and spheres) and statistical mechanics. I. Mathematical basis. J. Stat. Phys. 25:619–634.CrossRefADSMathSciNetGoogle Scholar
  30. Laskowski, R.A., Luscombe, N.M., Swindells, M.B., and Thornton, J.M. 1996. Protein clefts in molecular recognition and function. Protein Sci. 5:2438–2452.Google Scholar
  31. Leaver-Fay, A., Kuhlman, B., and Snoeyink, J. 2005. An adaptive dynamic programming algorithm for the side chain placement problem. Pac. Symp. Biocomput. pp. 17–28.Google Scholar
  32. Lee, B., and Richards, F.M. 1971. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55:379–400.CrossRefGoogle Scholar
  33. Levitt, M., Gerstein, M., Huang, E., Subbiah, S., and Tsai, J. 1997. Protein folding: The endgame. Annu. Rev. Biochem. 66:549–579.CrossRefGoogle Scholar
  34. Li, X., Hu, C., and Liang, J. 2003. Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53:792–805.CrossRefGoogle Scholar
  35. Li, X., and Liang, J. 2005a. Computational design of combinatorial peptide library for modulating protein—protein interactions. Pac. Symp. Biocomput. pp. 28–39.Google Scholar
  36. Li, X., and Liang, J. 2005b. Geometric cooperativity and anticooperativity of three-body interactions in native proteins. Proteins 60:46–65.CrossRefGoogle Scholar
  37. Liang, J., and Dill, K.A. 2001. Are proteins well-packed? Biophys. J. 81:751–766.ADSCrossRefGoogle Scholar
  38. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V., and Subramaniam, S. 1998a. Analytical shape computing of macromolecules I: Molecular area and volume through alpha-shape. Proteins 33:1–17.CrossRefGoogle Scholar
  39. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V., and Subramaniam, S. 1998b. Analytical shape computing of macromolecules II: Identification and computation of inaccessible cavities inside proteins. Proteins 33:18–29.CrossRefGoogle Scholar
  40. Liang, J., Edelsbrunner, H., and Woodward, C. 1998c. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 7:1884–1897.CrossRefGoogle Scholar
  41. Lichtarge, O., Bourne, H., and Cohen, F. 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257:342–358.CrossRefGoogle Scholar
  42. Martin, A.C.R., Orengo, C.A., Hutchinson, E.G., Michie, A.D., Wallace, A.C., Jones, M.L., and Thornton, J.M. 1998. Protein folds and functions. Structure 6:875–884.CrossRefGoogle Scholar
  43. Norel, R., Fischer, D., Wolfson, H.J., and Nussinov, R. 1994. Molecular surface recognition by a computer vision-based technique. Protein Eng. 7:39–46.CrossRefGoogle Scholar
  44. Orengo, C.A., Todd, A.E., and Thornton, J.M. 1999. From protein structure to function. Curr. Opin. Struct. Biol. 9:374–382.CrossRefGoogle Scholar
  45. Petitjean, M. 1994. On the analytical calculation of van der Waals surfaces and volumes: Some numerical aspects. J. Comput. Chem. 15:507–523.CrossRefMathSciNetGoogle Scholar
  46. Rhodes, G. 1999. Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models. San Diego, Academic Press.Google Scholar
  47. Richards, F.M. 1974a. The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol. 82:1–14.CrossRefGoogle Scholar
  48. Richards, F.M. 1974b. The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol. 82:1–14.CrossRefGoogle Scholar
  49. Richards, F.M. 1977. Areas, volumes, packing, and protein structures. Annu. Rev. Biophys. Bioeng. 6:151–176.CrossRefGoogle Scholar
  50. Richards, F.M. 1985. Calculation of molecular volumes and areas for structures of known geometries. Methods Enzymol. 115:440–464.CrossRefMathSciNetGoogle Scholar
  51. Richards, F.M., and Lim, W.A. 1994. An analysis of packing in the protein folding problem. Q. Rev. Biophys. 26:423–498.CrossRefGoogle Scholar
  52. Richmond, T.J. 1984. Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. J. Mol. Biol. 178:63–89.CrossRefGoogle Scholar
  53. Rieping, W., Habeck, M., and Nilges, M. 2005. Inferential structure determination. Science 309:303–306.CrossRefADSGoogle Scholar
  54. Røgen, P., and Bohr, H. 2003. A new family of global protein shape descriptors. Math. Biosci. 182:167–181.MATHCrossRefMathSciNetGoogle Scholar
  55. Røgen, P., and Fain, B. 2003. Automatic classification of protein structure by using Gauss integrals. Proc. Natl. Acad. Sci. USA 100:119–124.CrossRefADSGoogle Scholar
  56. Russell, R. 1998. Detection of protein three-dimensional side-chain patterns: New examples of convergent evolution. J. Mol. Biol. 279:1211–1227.CrossRefGoogle Scholar
  57. Singh, R.K., Tropsha, A., and Vaisman, I.I. 1996. Delaunay tessellation of proteins: Four body nearest-neighbor propensities of amino-acid residues. J. Comput. Biol. 3:213–221.CrossRefGoogle Scholar
  58. Todd, A.E., Orengo, C.A., and Thornton, J.M. 2001. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307:1113–1143.CrossRefGoogle Scholar
  59. Tsai, J., Taylor, R., Chothia, C., and Gerstein, M. 1999. The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290:253–266.CrossRefGoogle Scholar
  60. Tseng, Y., and Liang, J. 2005. Estimating evolutionary rate of local protein binding surfaces: A Bayesian Monte Carlo approach. Proc. 2005 IEEE EMBC Conf. Google Scholar
  61. Tseng, Y., and Liang, J. 2006. Estimation of amino acid residue substitution rates at local spatial regions and application in protein function inference: A Bayesian Monte Carlo approach. Mol. Biol. Evo. 23:421–436.CrossRefGoogle Scholar
  62. Tseng, Y., and Liang, J. 2005b. Estimation of amino acid residue substitution rates at local spatial regions and application in protein function inference: A Bayesian Monte Carlo approach. Mol. Biol. Evol. doi:10.1093/molbev/msj048.Google Scholar
  63. Wallace, A.C., Borkakoti, N., and Thornton, J.M. 1997. TESS: A geometric hashing algorithm for deriving 3d coordinate templates for searching structural databases. Application to enzyme active sites. Protein Sci. 6:2308–2323.CrossRefGoogle Scholar
  64. Word, J., Lovell, S., Richardson, J., and Richardson, D. 1999. Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285:1735–1747.CrossRefGoogle Scholar
  65. Xu, J. 2005. Rapid protein side-chain packing via tree decomposition. In RECOMB, pp. 423–439.Google Scholar
  66. Zhang, J., Chen, R., Tang, C., and Liang, J. 2003. Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers. J. Chem. Phys. 118:6102–6109.CrossRefADSGoogle Scholar
  67. Zheng, W., Cho, S.J., Vaisman, I.I., and Tropsha, A. 1997. A new approach to protein fold recognition based on Delaunay tessellation of protein structure. In Pacific Symposium on Biocomputing'97, (R. Altman, A. Dunker, L. Hunter, and T. Klein, Eds.). Singapore, World Scientific, pp. 486–497.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jie Liang

There are no affiliations available

Personalised recommendations