Skip to main content

Knowledge-Based Energy Functions for Computational Studies of Proteins

  • Chapter
Computational Methods for Protein Structure Prediction and Modeling

Part of the book series: BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING ((BIOMEDICAL))

Abstract

This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design.We discuss in some detail the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and nonlinear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamian, L., Jackups, R., Binkowski, T.A., and Liang, J. 2003. Higher-order interhelical spatial interactions in membrane proteins. J. Mol. Biol. 327:251–272.

    Article  Google Scholar 

  • Adamian, L., and Liang, J. 2001. Helix—helix packing and interfacial pairwise interactions of residues in membrane proteins. J. Mol. Biol. 311:891–907.

    Article  Google Scholar 

  • Adamian, L., and Liang, J. 2002. Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers. Proteins 47:209–218.

    Article  Google Scholar 

  • Amzel, L.M. 2000. Calculation of entropy changes in biological processes: Folding, binding, and oligomerization. Methods Enzymol. 323:167–177.

    Article  Google Scholar 

  • Anfinsen, C.B. 1973. Principles that govern the folding of protein chains. Science 181:223–230.

    Article  ADS  Google Scholar 

  • Anfinsen, C., Haber, E., Sela, M., and White, F. 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA 47:1309–1314.

    Article  ADS  Google Scholar 

  • Bastolla, U., Farwer, J., Knapp, E.W., and Vendruscolo, M. 2001. How to guarantee optimal stability for most representative structures in the protein data bank. Proteins, 44:79–96.

    Article  Google Scholar 

  • Bastolla, U., Vendruscolo, M., and Knapp, E.W. 2000. A statistical mechanical method to optimize energy functions for protein folding. Proc. Natl. Acad. Sci. USA 97:3977–3981.

    Article  ADS  Google Scholar 

  • Ben-Naim, A. 1997. Statistical potentials extracted from protein structures: Are these meaningful potentials? J. Chem. Phys. 107:3698–3706.

    Article  ADS  Google Scholar 

  • Berkelaar, M. 2004. LP_Solve package. URL http://www.cs.sunysb.edu/algorith/implement/lpsolve/implement.shtml

    Google Scholar 

  • Betancourt, M.R., and Thirumalai, D. 1999. Pair potentials for protein folding: Choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 8:361–369.

    Article  Google Scholar 

  • Bienkowska, J.R., Rogers, R.G., and Smith, T.F. 1999. Filtered neighbors threading. Proteins 37:346–359.

    Article  Google Scholar 

  • Bordner, A.J., and Abagyan, R.A. 2004. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57:400–413.

    Article  Google Scholar 

  • Buchete, N.V., Straub, J.E., and Thirumalai, D. 2003. Anisotropic coarse-grained statistical potentials improve the ability to identify nativelike protein structures. J. Chem. Phys. 118:7658–7671.

    Article  ADS  Google Scholar 

  • Buchete, N.V., Straub, J.E., and Thirumalai, D. 2004. Orientational potentials extracted from protein structures improve native fold recognition. Protein Sci. 13:862–874.

    Article  Google Scholar 

  • Burges, C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2. URL /papers/Burges98.ps.gz

    Google Scholar 

  • Carter, C., Jr., LeFebvre, B., Cammer, S., Tropsha, A., and Edgell, M. 2001. Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. J. Mol. Biol. 311:625–638.

    Article  Google Scholar 

  • Chan, H.S., and Dill, K.A. 1990. Origins of structure in globular proteins. Proc. Natl. Acad. Sci. USA 87:6388–6392.

    Article  ADS  Google Scholar 

  • Chiu, T.L., and Goldstein, R.A. 1998. Optimizing energy potentials for success in protein tertiary structure prediction. Folding Des. 3:223–228.

    Article  Google Scholar 

  • Czaplewski, C., Rodziewicz-Motowidlo, S., Liwo, A., Ripoll, D.R., Wawak, R.J., and Scheraga, H.A. 2000. Molecular simulation study of cooperativity in hydrophobic association. Protein Sci. 9:1235–1245.

    Article  Google Scholar 

  • Czyzyk, J., Mehrotra, S., Wagner, M., and Wright, S. 2004. PCx package. URL http://www-fp.mcs.anl.gov/otc/Tools/PCx/

    Google Scholar 

  • Dahiyat, B.I., and Mayo, S.L. 1997. De novo protein design: Fully automated sequence selection. Science 278:82–87.

    Article  Google Scholar 

  • Deutsch, J.M., and Kurosky, T. 1996. New algorithm for protein design. Phys. Rev. Lett. 76:323–326.

    Article  ADS  Google Scholar 

  • DeWitte, R.S., and Shakhnovich, E.I. 1996. SMoG: de novo design method based on simple, fast and accurate free energy estimates. 1. Methodology and supporting evidence. J. Am. Chem. Soc. 118:11733–11744.

    Article  Google Scholar 

  • Dima, R.I., Banavar, J.R., and Maritan, A. 2000. Scoring functions in protein folding and design. Protein Sci. 9:812–819.

    Article  Google Scholar 

  • Dobbs, H., Orlandini, E., Bonaccini, R., and Seno, F. 2002. Optimal potentials for predicting inter-helical packing in transmembrane proteins. Proteins 49:342–349.

    Article  Google Scholar 

  • Duan, Y., and Kollman, P.A. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744.

    Article  ADS  Google Scholar 

  • Eastwood, M.P., and Wolynes, P.G. 2001. Role of explicitly cooperative interactions in protein folding funnels: A simulation study. J. Chem. Phys. 114:4702–4716.

    Article  ADS  Google Scholar 

  • Edelsbrunner, H. 1987. Algorithms in Combinatorial Geometry. Berlin, Springer-Verlag.

    MATH  Google Scholar 

  • Fain, B., Xia, Y., and Levitt, M. 2002. Design of an optimal Chebyshev-expanded discrimination function for globular proteins. Protein Sci. 11:2010–2021.

    Article  Google Scholar 

  • Finkelstein, A.V., Badretdinov, A.Y., and Gutin, A.M. 1995. Why do protein architectures have boltzmann-like statistics? Proteins 23:142–150.

    Article  Google Scholar 

  • Friedrichs, M.S., and Wolynes, P.G. 1989. Toward protein tertiary structure recognition by means of associative memory hamiltonians. Science 246:371–373.

    Article  ADS  Google Scholar 

  • Gan, H., Tropsha, A., and Schlick, T. 2001. Lattice protein folding with two and four-body statistical potentials. Proteins 43:161–174.

    Article  Google Scholar 

  • Gilis, D. 2004. Protein decoy sets for evaluating energy functions. J. Biomol. Struct. Dyn. 21:725–736.

    Google Scholar 

  • Gilis, D., and Rooman, M. 1996. Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials. J. Mol. Biol. 257:1112–1126.

    Article  Google Scholar 

  • Gilis, D., and Rooman, M. 1997. Predicting protein stability changes upon mutation using database-derived potentials: Solvent accessibility determines the importance of local versus non-local interactions along the sequence. J. Mol. Biol. 272:276–290.

    Article  Google Scholar 

  • Godzik, A., Kolinski, A., and Skolnick, J. 1992. Topology fingerprint approach to the inverse protein folding problem. J. Mol. Biol. 227:227–238.

    Article  Google Scholar 

  • Godzik, A., and Skolnick, J. 1992. Sequence—structure matching in globular proteins: Application to supersecondary and tertiary structure determination. Proc. Natl. Acad. Sci. USA 89:12098–12102.

    Article  ADS  Google Scholar 

  • Goldstein, R., Luthey-Schulten, Z.A., and Wolynes, P.G. 1992. Protein tertiary structure recognition using optimized hamiltonians with local interactions. Proc. Natl. Acad. Sci. USA 89:9029–9033.

    Article  ADS  Google Scholar 

  • Guerois, R., Nielsen, J.E., and Serrano, L. 2002. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J. Mol. Biol. 320:369–387.

    Article  Google Scholar 

  • Hao, M.H., and Scheraga, H.A. 1996. How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. USA 93:4984–4989.

    Article  ADS  Google Scholar 

  • Hao, M.H., and Scheraga, H.A. 1999. Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 9:184–188.

    Article  Google Scholar 

  • Hill, R.B., Raleigh, D.P., Lombardi, A., and DeGrado, W.F. 2000. De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33:745–754.

    Article  Google Scholar 

  • Hoppe, C., and Schomburg, D. 2005. Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential. Protein Sci. 14:2682–2692.

    Article  Google Scholar 

  • Hu, C., Li, X., and Liang, J. 2004. Developing optimal non-linear scoring function for protein design. Bioinformatics 20:3080–3098.

    Article  Google Scholar 

  • Jackups, R., Jr. and Liang, J. 2005. Interstrand pairing patterns in β-barrel membrane proteins: The positive-outside rule, ar omatic rescue, and strand registration prediction. J. Mol. Biol. 354:979–993.

    Article  Google Scholar 

  • Janicke, R. 1987. Folding and association of proteins. Prog. Biophys. Mol. Biol. 49:117–237.

    Article  Google Scholar 

  • Jernigan, R.L., and Bahar, I. 1996 Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6:195–209.

    Article  Google Scholar 

  • Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4:373–395.

    Article  MATH  MathSciNet  Google Scholar 

  • Karplus, M., and Petsko, G.A. 1990. Molecular dynamics simulations in biology. Nature 347:631–639.

    Article  ADS  Google Scholar 

  • Khatun, J., Khare, S.D., and Dokholyan, N.V. 2004. Can contact potentials reliably predict stability of proteins? J. Mol. Biol. 336:1223–1238.

    Article  Google Scholar 

  • Kocher, J.A., Rooman, M.J., and Wodak, S.J. 1994. Factors influencing the ability of knowledge-based potentials to identify native sequence—structure matches. J. Mol. Biol. 235:1598–1613.

    Article  Google Scholar 

  • Koehl, P., and Levitt, M. 1999a. De novo protein design. I. In search of stability and specificity. J. Mol. Biol. 293:1161–1181.

    Article  Google Scholar 

  • Koehl, P., and Levitt, M. 1999b. De novo protein design. II. Plasticity of protein sequence. J. Mol. Biol. 293:1183–1193.

    Article  Google Scholar 

  • Koretke, K.K., Luthey-Schulten, Z., and Wolynes, P.G. 1996. Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5:1043–1059.

    Article  Google Scholar 

  • Koretke, K.K., Luthey-Schulten, Z., and Wolynes, P.G. 1998. Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. USA 95:2932–2937.

    Article  ADS  Google Scholar 

  • Kortemme, T., and Baker, D. 2002. A simple physical model for binding energy hot spots in protein—protein complexes. Proc. Natl. Acad. Sci. USA 99:14116–14121.

    Article  ADS  Google Scholar 

  • Kortemme, T., Kim, D.E., and Baker, D. 2004. Computational alanine scanning of protein—protein interfaces. Sci. STKE 2004:pl2.

    Article  Google Scholar 

  • Kortemme, T., Morozov, A.V., and Baker, D. 2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein—protein complexes. J. Mol. Biol. 326:1239–1259.

    Article  Google Scholar 

  • Krishnamoorthy, B., and Tropsha, A. 2003. Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations. Bioinformatics 19:1540–1548.

    Article  Google Scholar 

  • Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., and Baker, D. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368.

    Article  ADS  Google Scholar 

  • Lazaridis, T., and Karplus, M. 2000. Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol. 10:139–145.

    Article  Google Scholar 

  • Lee, K.H., Xie, D., Freire, E., and Amzel, L.M. 1994. Estimation of changes in side chain configurational entropy in binding and folding: General methods and application to helix formation. Proteins 20:68–84.

    Article  Google Scholar 

  • Lemer, C.M.R, Rooman, M.J., and Wodak, S.J. 1995. Protein-structure prediction by threading methods—Evaluation of current techniques. Proteins 23:337–355.

    Article  Google Scholar 

  • Levitt, M., and Warshel, A. 1975. Computer simulation of protein folding. Nature 253:694–698.

    Article  ADS  Google Scholar 

  • Li, H., Helling, R., Tang, C., and Wingreen, N. 1996. Emergence of preferred structures in a simple model of protein folding. Science 273:666–669.

    Article  ADS  Google Scholar 

  • Li, H. Tang, C., and Wingreen, N.S. 1997. Nature of driving force for protein folding: A result from analyzing the statistical potential. Phys. Rev. Lett. 79:765–768.

    Article  ADS  Google Scholar 

  • Li, X., Hu, C., and Liang, J. 2003. Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53:792–805.

    Article  Google Scholar 

  • Li, X., and Liang, J. 2005a. Computational design of combinatorial peptide library for modulating protein—protein interactions. Pacific Symposium of Biocomputing.

    Google Scholar 

  • Li, X., and Liang, J. 2005b. Geometric cooperativity and anti-cooperativity of three-body interactions in native proteins. Proteins 60:46–65.

    Article  Google Scholar 

  • Liang, J., and Dill, K.A. 2001. Are proteins well-packed? Biophys. J. 81:751–766.

    Article  ADS  Google Scholar 

  • Liu, S., Zhang, C., Zhou, H., and Zhou, Y. 2004. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56:93–101.

    Article  Google Scholar 

  • Looger, L.L., Dwyer, M.A., Smith, J.J., and Hellinga, H.W. 2003. Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190.

    Article  ADS  Google Scholar 

  • Lu, H., and Skolnick, J. 2001. A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44:223–232.

    Article  Google Scholar 

  • Maiorov, V.N., and Crippen, G.M. 1992. Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227:876–888.

    Article  Google Scholar 

  • McConkey, B.J., Sobolev, V., and Edelman, M. 2003. Discrimination of native protein structures using atom-atom contact scoring. Proc. Natl. Acad. Sci. USA 100:3215–3220.

    Article  ADS  Google Scholar 

  • Méndez, R., Leplae, R., Lensink, M.F., and Wodak, S.J. 2005. Assessment of capri predictions in rounds 3–5 shows progress in docking procedures. Proteins 60:150–169.

    Article  Google Scholar 

  • Mészáros, C.S. 1996. Fast Cholesky factorization for interior point methods of linear programming. Comput. Math. Appl. 31:49–51.

    Article  MATH  Google Scholar 

  • Micheletti, C., Seno, F., Banavar, J.R., and Maritan, A. 2001. Learning effective amino acid interactions through iterative stochastic techniques. Proteins 42: 422–431.

    Article  Google Scholar 

  • Mirny, L.A., and Shakhnovich, E.I. 1996. How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol. 264:1164–1179.

    Article  Google Scholar 

  • Mitchell, B.O., Laskowski, R.A., Alex, A., and Thornton, J.M. 1999. BLEEP: Potential of mean force describing protein—ligand interactions: II. Calculation of binding energies and comparison with experimental data. J. Comput. Chem. 20:1177–1185.

    Article  Google Scholar 

  • Miyazawa, S., and Jernigan, R.L. 1985. Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules 18:534–552.

    Article  ADS  Google Scholar 

  • Miyazawa, S., and Jernigan, R.L. 1996. Residue—residue potentials with a favorable contact pair term and an unfavorable high packing density term. J. Mol. Biol. 256:623–644.

    Article  Google Scholar 

  • Miyazawa, S., and Jernigan, R.L. 2005. How effective for fold recognition is a potential of mean force that includes relative orientations between contacting residues in proteins? J. Chem. Phys. 122:024901.

    Article  ADS  Google Scholar 

  • Momany, F.A., McGuire, R.F., Burgess, A.W., and Scheraga, H.A. 1975. Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79:2361–2381.

    Article  Google Scholar 

  • Muegge, I., and Martin, Y.C. 1999. A general and fast scoring function for protein—ligand interactions: A simplified potential approach. J. Med. Chem. 42:791–804.

    Article  Google Scholar 

  • Munson, P.J., and Singh, R.K. 1997. Statistical significance of hierarchical multi-body potential based on Delaunay tessellation and their application in sequence—structure alignment. Protein Sci. 6:1467–1481.

    Article  Google Scholar 

  • Nishikawa, K., and Matsuo, Y. 1993. Development of pseudoenergy potentials for assessing protein 3-D–1-D compatibility and detecting weak homologies. Protein Eng. 6:811–820.

    Article  Google Scholar 

  • Papadimitriou, C., and Steiglitz, K. 1998. Combinatorial Optimization: Algorithms and Complexity. New York, Dover.

    MATH  Google Scholar 

  • Park, B.H., and Levitt, M. 1996. Energy functions that discriminate X-ray and near-native folds from well-constructed decoys. J. Mol. Biol. 258:367–392.

    Article  Google Scholar 

  • Park, Y., Elsner, M., Staritzbichler, R., and Helms, V. 2004. Novel scoring function for modeling structures of oligomers of transmembrane alpha-helices. Proteins 57:577–585.

    Article  Google Scholar 

  • Rank, J.A., and Baker, D. 1997. A desolvation barrier to hydrophobic cluster formation may contribute to the rate-limiting step in protein folding. Protein Sci. 6:347–354.

    Article  Google Scholar 

  • Rohl, C.A., Strauss, C.E., Misura, K.M., and Baker, D. 2004. Protein structure prediction using Rosetta. Methods Enzymol. 383:66–93.

    Article  Google Scholar 

  • Rossi, A., Micheletti, C., Seno, F., and Maritan, A. 2001. A self-consistent knowledge-based approach to protein design. Biophys. J. 80:480–490.

    Article  Google Scholar 

  • Russ, W.P., and Ranganathan, R. 2002. Knowledge-based potential functions in protein design. Curr. Opin. Struct. Biol. 12:447–452.

    Article  Google Scholar 

  • Sale, K., Faulon, J., Gray, G., Schoeniger, J.S., and Young, M. 2004. Optimal bundling of transmembrane helices using sparse distance constraints. Protein Sci. 13:2613–2627.

    Article  Google Scholar 

  • Samudrala, R., and Levitt, M. 2000. Decoys ‘R’ Us: A database of incorrect conformations to improve protein structure prediction. Protein Sci. 9:1399–1401.

    Article  Google Scholar 

  • Samudrala, R., and Moult, J. 1998. An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275:895–916.

    Article  Google Scholar 

  • Schölkopf, B., and Smola, A.J. 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, MIT Press.

    Google Scholar 

  • Shakhnovich, E.I. 1994. Proteins with selected sequences fold into unique native conformation. Phys. Rev. Lett. 72:3907–3910.

    Article  ADS  Google Scholar 

  • Shakhnovich, E.I., and Gutin, A.M. 1993. Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. USA 90:7195–7199.

    Article  ADS  Google Scholar 

  • Shimizu, S., and Chan, H.S. 2001. Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond. J. Chem. Phys. 115:1414–1421.

    Article  ADS  Google Scholar 

  • Shimizu, S., and Chan, H.S. 2002. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Proteins 48:15–30.

    Article  Google Scholar 

  • Simons, K.T., Ruczinski, I., Kooperberg, C., Fox, B., Bystroff, C., and Baker, D. 1999. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34:82–95.

    Article  Google Scholar 

  • Singh, R.K., Tropsha, A., and Vaisman, I.I. 1996. Delaunay tessellation of proteins: Four body nearest-neighbor propensities of amino acid residues. J. Comput. Biol. 3:213–221.

    Article  Google Scholar 

  • Sippl, M.J. 1990. Calculation of conformational ensembles from potentials of the main force. J. Mol. Biol. 213:167–180.

    Article  Google Scholar 

  • Sippl, M.J. 1993. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided. Mol. Des. 7:473–501.

    Article  ADS  Google Scholar 

  • Sippl, M.J. 1995. Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5:229–235.

    Article  Google Scholar 

  • Tanaka, S., and Scheraga, H.A. 1976. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9:945–950.

    Article  ADS  Google Scholar 

  • Thomas, P.D., and Dill, K.A. 1996a. An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. USA 93:11628–11633.

    Article  ADS  Google Scholar 

  • Thomas, P.D., and Dill, K.A. 1996b. Statistical potentials extracted from protein structures: How accurate are they? J. Mol. Biol. 257:457–469.

    Article  Google Scholar 

  • Tobi, D., Shafran, G., Linial, N., and Elber, R. 2000. On the design and analysis of protein folding potentials. Proteins 40:71–85.

    Article  Google Scholar 

  • Vanderbei, R.J. 1996. Linear Programming: Foundations and Extensions. New York, Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York, Springer. ISBN 0-387-94559-8.

    MATH  Google Scholar 

  • Vapnik, V., and Chervonenkis, A. 1964. A note on one class of perceptrons. Automation and Remote Control 25.

    Google Scholar 

  • Vapnik, V., and Chervonenkis, A. 1974. Theory of Pattern Recognition [in Russian]. Nauka, Moscow, (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie—Verlag, Berlin, 1979).

    Google Scholar 

  • Venclovas, E., Zemla, A., Fidelis, K., and Moult, J. 2003. Comparison of performance in successive CASP experiments. Proteins 45:163–170.

    Article  Google Scholar 

  • Vendruscolo, M., and Domanyi, E. 1998. Pairwise contact potentials are unsuitable for protein folding. J. Chem. Phys. 109:11101–11108.

    Article  ADS  Google Scholar 

  • Vendruscolo, M., Najmanovich, R., and Domany, E. 2000. Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38:134–148.

    Article  Google Scholar 

  • Wodak, S.J., and Roomanm, M.J. 1993. Generating and testing protein folds. Curr. Opin. Struct. Biol. 3:247–259.

    Article  Google Scholar 

  • Wolynes, P.G., Onuchic, J.N., and Thirumalai, D. 1995. Navigating the folding routes. Science 267:1619–1620.

    Article  ADS  Google Scholar 

  • Xia, Y., and Levitt, M. 2000. Extracting knowledge-based energy functions from protein structures by error rate minimization: Comparison of methods using lattice model. J. Chem. Phys. 113:9318–9330.

    Article  ADS  Google Scholar 

  • Xu, D., Lin, S.L., and Nussinov, R. 1997. Protein binding versus protein folding: The role of hydrophilic bridges in protein associations. J. Mol. Biol. 2651:68–84.

    Article  Google Scholar 

  • Zhang, C., and Kim, S.H. 2000. Environment-dependent residue contact energies for proteins. Proc. Natl. Acad. Sci. USA 97:2550–2555.

    Article  ADS  Google Scholar 

  • Zhang, C., Liu, S., Zhou, H., and Zhou, Y. 2004a. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci. 13:400–411.

    Article  Google Scholar 

  • Zhang, C., Liu, S., Zhou, H., and Zhou, Y. 2004b. The dependence of all-atom statistical potentials on training structural database. Biophys. J. 86:3349–3358.

    Article  Google Scholar 

  • Zhang, C., Liu, S., Zhu, Q., and Zhou, Y. 2005. A knowledge-based energy function for protein—ligand, protein—protein, and protein—DNA complexes. J. Med. Chem. 48:2325–2335.

    Article  Google Scholar 

  • Zhang, C., Vasmatzis, G., Cornette, J.L., and DeLisi, C. 1997. Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Biol. 267:707–726.

    Article  Google Scholar 

  • Zheng, W., Cho, S.J., Vaisman, I.I., and Tropsha, A. 1997. A new approach to protein fold recognition based on Delaunay tessellation of protein structure. Pac. Symp. Biocomput. pp. 486–497.

    Google Scholar 

  • Zhou, H., and Zhou, Y. 2002. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11:2714–2726.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Li, X., Liang, J. (2007). Knowledge-Based Energy Functions for Computational Studies of Proteins. In: Xu, Y., Xu, D., Liang, J. (eds) Computational Methods for Protein Structure Prediction and Modeling. BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68372-0_3

Download citation

Publish with us

Policies and ethics