Advertisement

Abstract

Protein structure and dynamics and, therefore, their biological functions are dictatedxs by a collection of forces that vary from those associated with covalent linkages, such as bonds, to long-range through space forces, such as electrostatic or coulombic interactions. Accordingly, to be able to apply theoretical approaches to understand the behavior of proteins, it is necessary to be able to accurately predict the change in energy of a protein as a function of the change in conformation. Importantly, such predictions must include contributions from the environment in which the protein is immersed. While quantum-mechanical (QM) methods are attractive in their ability to model complex chemical phenomena at the level of electronic structure, such methods are typically inappropriate for proteins due to the large size of these macromolecules as well as the need to treat their environment in an explicit fashion. Rather, molecular mechanics (MM), which rely on potential energy functions or empirical force fields, afford the computational speed to allow for calculations on proteins along with their environment.

Keywords

Potential Energy Function Valence Angle Partial Atomic Charge Hydration Free Energy Generalize Born 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F. H., S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers, and D. G. Watson. 1979. The Cambridge Crystallographic Data Centre: Computer-based search, retrieval, analysis and display of information. Acta Crystallogr. Sect. B 35:2331–2339.CrossRefGoogle Scholar
  2. Allen, M. P., and D. J. Tildesley. 1989. Computer Simulation of Liquids. New York, Oxford University Press.Google Scholar
  3. Anisimov, V. M., G. Lamoureux, I. V. Vorobyov, N. Huang, B. Roux, and A. D. MacKerell, Jr. 2005. Determination of electrostatic parameters for a polarizable force field based on the classical drude oscillator. J. Chem. Theory Comput. 1:153–168.CrossRefGoogle Scholar
  4. Banavali, N. K., and B. Roux. 2002. Atomic radii for continuum electrostatic calculations on nucleic acids. J. Phys. Chem. B 106:11026–11035.CrossRefGoogle Scholar
  5. Barth, E., and T. Schlick. 1998. Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys. 109:1633–1642.ADSCrossRefGoogle Scholar
  6. Bayly, C. I., P. Cieplak, W. D. Cornell, and P. A. Kollman. 1993. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97:10269–10280.CrossRefGoogle Scholar
  7. Beachy, M. D., D. Chasman, R. B. Murphy, T. A. Halgren, and R. A. Friesner. 1997. Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields. J. Am. Chem. Soc. 119:5908–5920.CrossRefGoogle Scholar
  8. Beglov, D., and B. Roux. 1994. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100:9050–9063.ADSCrossRefGoogle Scholar
  9. Berendsen, H. J. C., J. R. Grigera, and T. P. Straatsma. 1987. The missing term in effective pair potentials. J. Phys. Chem. 91:6269–6271.CrossRefGoogle Scholar
  10. Berman, H. M., T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. D. Westbrook, and C. Zardecki. 2002. The protein data bank. Acta. Crystallogr. D. Biol. Crystallogr. 58:899–907.CrossRefGoogle Scholar
  11. Bishop, T. C., R. D. Skeel, and K. Schulten. 1997. Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. J. Comput. Chem. 18:1785–1791.CrossRefGoogle Scholar
  12. Blondel, A., and M. Karplus. 1996. New formulation of derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities. J. Comput. Chem. 17:1132–1141.CrossRefGoogle Scholar
  13. Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4:187–217.CrossRefGoogle Scholar
  14. Buck, M., S. Bonnet, R. W. Pastor, and A. D. MacKerell, Jr. 2006. Importance of the CMAP correction to the CHARMM22 Protein Force Field: Dynamics of hen lysozyme. Biophys. J. 90:L36–L38.CrossRefGoogle Scholar
  15. Buckingham, A. D., and P. W. Fowler. 1985. A model for the geometries of van der Waals complexes. Can. J. Chem. 63:2018.CrossRefGoogle Scholar
  16. Burkert, U., and N. L. Allinger. 1982. Molecular Mechanics. Washington, DC, American Chemical Society.Google Scholar
  17. Bush, B. L., C. I. Bayly, and T. A. Halgren. 1999. Consensus bond-charge increments fitted to electrostatic potential or field of many compounds: Application of MMFF94 training set. J. Comput. Chem. 20:1495–1516.CrossRefGoogle Scholar
  18. Chalasinski, G., and M. M. Szczesniak. 1994. Origins of structure and energetics of van der Waals clusters from ab initio calculations. Chem. Rev. 94:1723–1765.CrossRefGoogle Scholar
  19. Chen, I.-J., D. Yin, and A. D. MacKerell, Jr. 2002. Combined ab initio/empirical optimization of Lennard-Jones parameters for polar neutral compounds. J. Comput. Chem. 23:199–213.CrossRefGoogle Scholar
  20. Chirlian, L. E., and M. M. Francl. 1987. Atomic charges derived from electrostatic potentials: A detailed study. J. Comput. Chem. 8:894–905.CrossRefGoogle Scholar
  21. Cieplak, P., W. D. Cornell, C. I. Bayly, and P. K. Kollman. 1995. Application of the multimolecule and multiconformational RESP methodlogy to biopolymers: Charge derivation for DNA, RNA, and proteins. J. Comput. Chem. 16:1357–1377.CrossRefGoogle Scholar
  22. Cornell, W. D., P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179–5197.CrossRefGoogle Scholar
  23. Darden, T. 2001. Treatment of long-range forces and potentials. In Computational Biochemistry and Biophysics (O. M. Becker, A. D. MacKerell, Jr., B. Roux, and M. Watanabe, Eds.). New York, Dekker, pp. 91–114.Google Scholar
  24. Daura, X., P. H. Hünenberger, A. E. Mark, E. Querol, F. X. Avilés, and W. F. van Gunsteren. 1996. Free energies of transfer of Trp analogs from chloroform to water: Comparison of theory and experiment and the importance of adequate treatment of electrostatics and internal interactions. J. Am. Chem. Soc. 118:6285– 6294.CrossRefGoogle Scholar
  25. Davis, M. E., and J. A. McCammon. 1990. Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90:509–521.CrossRefGoogle Scholar
  26. Deng, Y., and B. Roux. 2004. Hydration of amino acid side chains: Non-polar and electrostatic contributions calculated from staged molecular dynamics free energy simulations with explicit water molecules. J. Phys. Chem. B 108:16567–16576.CrossRefGoogle Scholar
  27. Derreumaux, P., and G. Vergoten. 1995. A new spectroscopic molecular mechanics force field. Parameters for proteins. J. Chem. Phys. 102:8586–8605.ADSCrossRefGoogle Scholar
  28. Duan, Y., C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Ceiplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24:1999–2012.CrossRefGoogle Scholar
  29. Dunbrack, R. L., Jr. 2002. Culledpdb: Non-redundant set of protein sidechains from the PDB. Philadelphia.Google Scholar
  30. Dunbrack, R. L., Jr., and F. E. Cohen. 1997. Bayesian statistical analysis of protein sidechain rotamer preferences. Protein Sci. 6:1661–1681.Google Scholar
  31. Elber, R., and M. Karplus. 1990. Enhanced sampling in molecular dynamics: Use of the time-dependent hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112:9161–9175.CrossRefGoogle Scholar
  32. Ewald, P. P. 1921. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64:253–287.CrossRefGoogle Scholar
  33. Ewig, C. S., R. Berry, U. Dinur, J.-R. Hill, M.-J. Hwang, H. Li, C. Liang, J. Maple, Z. Peng, T. P. Stockfisch, T. S. Thacher, L. Yan, X. Ni, and A. T. Hagler. 2001. Derivation of class II force fields. VIII. Derivation of a general quantum mechanical force field for organic compounds. J. Comput. Chem. 22:1782–1800.CrossRefGoogle Scholar
  34. Feig, M., and C. L. Brooks III. 2004. Recent advances in the development and application of implicit solvent models in biomolecular simulations. Curr. Opin. Struct. Biol. 14:217–224.CrossRefGoogle Scholar
  35. Feller, S. E., K. Gawrisch, and A. D. MacKerell, Jr. 2002. Polyunsaturated fatty acids in lipid bilayers: Intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc. 124:318–326.CrossRefGoogle Scholar
  36. Feller, S. E., R. W. Pastor, A. Rojnuckarin, S. Bogusz, and B. R. Brooks. 1996. Effect of electrostatic force truncation on interfacial and transport properties of water. J. Phys. Chem. 100:17011–17020.CrossRefGoogle Scholar
  37. Feller, S. E., Y. Zhang, R. W. Pastor, and R. W. Brooks. 1995. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 103:4613–4621.ADSCrossRefGoogle Scholar
  38. Ferrara, P., J. Apostolakis, and A. Caflisch. 2002. Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46:24–33.CrossRefGoogle Scholar
  39. Ferrara, P., H. Gohlke, D. J. Price, G. Klebe, and C. L. I. Brooks. 2004. Assessing scoring functions for protein—ligand interactions. J. Med. Chem. 47:3032–3047.CrossRefGoogle Scholar
  40. Ferro, D. R., J. E. McQueen, J. T. McCown, and J. Hermans. 1980. Energy minimization of rubredoxin. J. Mol. Biol. 136:1–18.CrossRefGoogle Scholar
  41. Florián, J., and A. Warshel. 1997. Langevin dipoles model for ab initio calculations of chemical processes in solution: Parameterization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous sdolution. J. Phys. Chem. B 101:5583–5595.CrossRefGoogle Scholar
  42. Foloppe, N., and A. D. MacKerell, Jr. 2000. All-atom empirical force field for nucleic acids: 1. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21:86–104.CrossRefGoogle Scholar
  43. Francl, M. M., C. Carey, L. E. Chirlian, and D. M. Gange. 1996. Charge fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials? J. Comput. Chem. 17:367–383.CrossRefGoogle Scholar
  44. Freedberg, D. I., R. M. Venable, A. Rossi, T. E. Bull, and R. W. Pastor. 2004. Discriminating the helical forms of peptides by NMR and molecular dynamics simulations. J. Am. Chem. Soc. 126:10478–10484.CrossRefGoogle Scholar
  45. Gallicchio, E., and R. M. Levy. 2004. AGBNP: An analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25:479–499.CrossRefGoogle Scholar
  46. Gallicchio, E., L. Y. Zhang, and R. M. Levy. 2003. The SGB/NP hydration free energy model based on the surface generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J. Comput. Chem. 23:517–529.CrossRefGoogle Scholar
  47. Garcia, A. E., and K. Y. Sanbonmatsu. 2002. α-Helical stabilization by side chain sheilding of backbone hydrogen bonds. Proc. Natl. Acad. Sci. USA 99:2782–2787.ADSCrossRefGoogle Scholar
  48. Gilson, M. K., H. S. Gilson, and M. J. Potter. 2003. Fast assignment of accurate partial atomic charges: An electronegativity equilization method that accounts for alternate resonance forms. J. Chem. Inf. Comput. Sci. 43:1982–1997.CrossRefGoogle Scholar
  49. Gilson, M. K., and B. Honig. 1988. Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis. Proteins 4:7–18.CrossRefGoogle Scholar
  50. Glättli, A., X. Daura, and W. F. van Gunsteren. 2003. A novel approach for designing simple point charge models for liquid water with three interaction sites. J. Comput. Chem. 24:1087–1096.CrossRefGoogle Scholar
  51. Gohlke, H., C. Kiel, and D. Case. 2003. Protein—protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol 330:891–913.CrossRefGoogle Scholar
  52. Habtemariam, B., V. M. Anisimov, and A. D. MacKerell, Jr. 2005. Cooperative binding of DNA and CBFβ to the runt domain of the CBFα studied via MD simulations. Nucleic Acids Res. 33:4212–4222.CrossRefGoogle Scholar
  53. Halgren, T. A. 1992. Representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 114:7827–7843.CrossRefGoogle Scholar
  54. Halgren, T. A. 1996a. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17: 490–519.CrossRefGoogle Scholar
  55. Halgren, T. A. 1996b. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 17:520–552.CrossRefGoogle Scholar
  56. Halgren, T. A. 1996c. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 17:553–586.CrossRefGoogle Scholar
  57. Halgren, T. A. 1999. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem. 20:730–748.CrossRefGoogle Scholar
  58. Halgren, T. A., and W. Damm. 2001. Polarizable force fields. Curr. Opin. Struct. Biol. 11:236–242.CrossRefGoogle Scholar
  59. Hansmann, U. H. E. 1997. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281:140–150.CrossRefADSGoogle Scholar
  60. Harder, E., B. Kim, R. A. Friesner, and B. J. Berne. 2005. Efficient simulation method for polarizable protein force fields: Application to the simulation of BPTI in liquid water. J. Chem. Theory Comput. 1:169–180.CrossRefGoogle Scholar
  61. Head-Gordon, T., M. Head-Gordon, M. J. Frisch, C. L. Brooks, and J. A. Pople. 1991. Theoretical study of blocked glycine and alanine peptide analogues. J. Am. Chem. Soc. 113:5989–5997.CrossRefGoogle Scholar
  62. Henchman, R. H., and J. W. Essex. 1999. Generation of OPLS-like charges from molecular electrostatic potential using restraints. J. Comput. Chem. 20:483–498.CrossRefGoogle Scholar
  63. Hermans, J., H. J. C. Berendsen, W. F. van Gunsteren, and J. P. M. Postma. 1984. A consistent empirical potential for water—protein interactions. Biopolymers 23:1513–1518.CrossRefGoogle Scholar
  64. Honig, B. 1993. Macroscopic models of aqueous solutions: Biological and chemical applications. J. Phys. Chem. 97:1101.CrossRefGoogle Scholar
  65. Hu, H., M. Elstner, and J. Hermans. 2003. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine“dipeptides”(Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Proteins Struct Funct. Genet. 50:451–463.CrossRefGoogle Scholar
  66. Huang, N., and A. D. MacKerell, Jr. 2002. An ab initio quantum mechanical study of hydrogen-bonded complexes of biological interest. J. Phys. Chem. B 106:7820–7827.Google Scholar
  67. Im, W., S. Bernéche, and B. Roux. 2001. Generalized solvent boundary potential for computer simulations. J. Chem. Phys. 114:2924–2937.ADSCrossRefGoogle Scholar
  68. Im, W., M. S. Lee, and C. L. Brooks III. 2003. Generalized Born model with a simple smoothing function. J. Comput. Chem. 24:1691–702.CrossRefGoogle Scholar
  69. Jakalian, A., B. L. Bush, D. B. Jack, and C. I. Bayly. 2000. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21:132–146.CrossRefGoogle Scholar
  70. Jayaram, B., K. J. McConnell, S. B. Dixit, and D. L. Beveridge. 2002. Free-energy component analysis of 40 protein—DNA complexes: A consensus view on the thermodynamics of binding at the macromolecular level. J. Comput. Chem. 23:1–14.CrossRefGoogle Scholar
  71. Jayaram, B., D. Sprous, and D. L. Beveridge. 1998. Solvation free energy of biomacromolecules: Parameters for a modified generalized Born model consistent with the AMBER force field. J. Phys. Chem. B 102: 9571–9576.CrossRefGoogle Scholar
  72. Jorgensen, W. L. 1984. Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106:6638–6646.CrossRefGoogle Scholar
  73. Jorgensen, W. L. 1986. Optimized intermolecular potential functions for liquid alcohols. J. Phys. Chem. 90:1276–1284.CrossRefGoogle Scholar
  74. Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935.ADSCrossRefGoogle Scholar
  75. Jorgensen, W. L., D. S. Maxwell, and J. Tirado-Rives. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225–11236.CrossRefGoogle Scholar
  76. Jorgensen, W. L., and J. Tirado-Rives. 1988. The OPLS potential function for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110:1657–1666.CrossRefGoogle Scholar
  77. Kaminski, G., R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105:6474–6487.CrossRefGoogle Scholar
  78. Kaminski, G. A., H. A. Stern, B. J. Berne, R. A. Friesner, Y. X. Cao, R. B. Murphy, R. Zhou, and T. A. Halgren. 2002. Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests. J. Comput. Chem. 23: 1515–1531.CrossRefGoogle Scholar
  79. Kim, K., and R. A. Friesner. 1997. Hydrogen bonding between amino acid backbone and side chain analogues: A high-level ab initio study. J. Am. Chem. Soc. 119:12952–12961.CrossRefGoogle Scholar
  80. Klauda, J. B., B. R. Brooks, A. D. MacKerell, Jr., R. M. Venable, and R. W. Pastor. 2005. An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J. Phys. Chem. B 109:5300–5311.CrossRefGoogle Scholar
  81. Kollman, P. A., I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, and T. E. Cheatham III. 2000. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33:889–897.CrossRefGoogle Scholar
  82. Lague, P., R. W. Pastor, and B. R. Brooks. 2004. A pressure-based long-range correction for Lennard Jones interactions in molecular dynamics simulations: Application to alkanes and interfaces. J. Phys. Chem. B 108:363–368.CrossRefGoogle Scholar
  83. Laio, A., J. VandeVondele, and U. Rothlisberger. 2002. D-RESP: Dynamically generated electrostatic potential derived charges from quantum mechanics/molecular mechanics simulations. J. Phys. Chem. B 106:7300–7307.CrossRefGoogle Scholar
  84. Lamoureux, G., E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr. 2005. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 418:241–245.Google Scholar
  85. Lazaridis, T., and M. Karplus. 1999. Effective energy function for proteins in solution. Proteins 35:133–152.CrossRefGoogle Scholar
  86. Lee, M. S., M. Feig, F. R. Salsbury, Jr., and C. L. Brooks III. 2003. New analytical approximation of the standard molecular volume definition and its application to generalized Born calculations. J. Comput. Chem. 24:1348–1356.CrossRefGoogle Scholar
  87. Lee, M. S., F. R. Salsbury, Jr., and C. L. Brooks III. 2002. Novel generalized Born methods. J. Chem. Phys. 116:10606–10614.ADSCrossRefGoogle Scholar
  88. Levitt, M. 1990. ENCAD—Energy Calculations and Dynamics. Stanford, CA and Rehovot, Israel, Molecular Applications Group.Google Scholar
  89. Levitt, M., M. Hirshberg, R. Sharon, and V. Daggett. 1995. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Commun. 91:215–231.ADSCrossRefGoogle Scholar
  90. Levitt, M., M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett. 1997. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J. Phys. Chem. B 101:5051–5061.CrossRefGoogle Scholar
  91. Lii, J.-L., and N. L. Allinger. 1991. The MM3 force field for amides, polypeptides and proteins. J. Comput. Chem. 12:186–199.CrossRefGoogle Scholar
  92. MacCallum, J. L., and P. Tieleman. 2003. Calculation of the water—cyclohexane transfer free energies of amino acid side-chain analogs using the OPLS all-atom force field. J. Comput. Chem. 24:1930–1935.CrossRefGoogle Scholar
  93. Macias, A. T., and A. D. MacKerell, Jr. 2005. CH/pi interactions involving aromatic amino acids: Refinement of the CHARMM tryptophan force field. J. Comput. Chem. 26:1452–1463.CrossRefGoogle Scholar
  94. MacKerell, A. D., Jr. 2001. Atomistic models and force fields. In Computational Biochemistry and Biophysics (O. M. Becker, A. D. MacKerell, Jr., B. Roux, and M. Watanabe, Eds.). New York, Dekker, pp. 7–38.Google Scholar
  95. MacKerell, A. D., Jr. 2004. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 25:1584–1604.CrossRefGoogle Scholar
  96. MacKerell, A. D., Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. Reiher, W. E., B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. 1998a. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616.CrossRefGoogle Scholar
  97. MacKerell, A. D., Jr., B. Brooks, C. L. Brooks III, L. Nilsson, B. Roux, Y. Won, and M. Karplus. 1998b. CHARMM: The energy function and its paramerization with an overview of the program. In Encyclopedia of Computational Chemistry (P. v. R. Schleyer et al., Eds.) Chichester, John Wiley & Sons. pp. 271–277.Google Scholar
  98. MacKerell, A. D., Jr., M. Feig, and C. L. Brooks III. 2004a. Accurate treatment of protein backbone conformational energetics in empirical force fields. J. Am. Chem. Soc. 126:698–699.CrossRefGoogle Scholar
  99. MacKerell, A. D., Jr., M. Feig, and C. L. Brooks III. 2004b. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400–1415.CrossRefGoogle Scholar
  100. MacKerell, A. D., Jr., J. Wiórkiewicz-Kuczera, and M. Karplus. 1995. An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc. 117:11946–11975.CrossRefGoogle Scholar
  101. Mahoney, M. W., and W. L. Jorgensen. 2000. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112:8910–8922.ADSCrossRefGoogle Scholar
  102. Martyna, G. J., D. J. Tobias, and M. L. Klein. 1994. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101:4177–4189.ADSCrossRefGoogle Scholar
  103. Mayo, S. L., B. D. Olafson, and W. A Goddard III. 1990.‘DREIDING: A generic force field for molecular simulations.’J. Phys. Chem. 94:8897–8909.CrossRefGoogle Scholar
  104. McQuarrie, D. A. 1976. Statistical Mechanics. New York, Harper & Row.Google Scholar
  105. Merz, K. M. 1992. Analysis of a large data base of electrostatic potential derived atomic charges. J. Comput. Chem. 13:749–767.CrossRefGoogle Scholar
  106. Neria, E., S. Fischer, and M. Karplus. 1996. Simulation of activation free energies in molecular systems. J. Chem. Phys. 105:1902–1919.ADSCrossRefGoogle Scholar
  107. Nina, M., D. Beglov, and B. Roux. 1997. Atomic radii for continuum electrostatics calculation based on molecular dynamics free energy simulations. J. Phys. Chem. B 101:5239–5248.CrossRefGoogle Scholar
  108. Nymeyer, H., S. Gnanakaran, and A. E. Garcia. 2004. Atomic simulations of protein folding, using the replica exchange algorithm. Methods Enzymol. 383:119–149.Google Scholar
  109. Okur, A., B. Strockbine, V. Hornak, and C. Simmerling. 2003. Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins. J. Comput. Chem. 24:21–31.CrossRefGoogle Scholar
  110. Ono, S., M. Kuroda, J. Higo, N. Nakajima, and H. Nakamura. 2002. Calibration of force-field dependency in free energy landscapes of peptide conformations by quantum chemical calculations. J. Comput. Chem. 23:470–476.CrossRefGoogle Scholar
  111. Onufriev, A., D. Bashford, and D. A. Case. 2000. Modification of the generalized born model suitable for macromolecules. J. Phys. Chem. B 104:3712–3720.CrossRefGoogle Scholar
  112. Palmo, K., B. Mannfors, N. G. Mirkin, and S. Krimm. 2003. Potential energy functions: From consistent force fields to spectroscopically determined polarizable force fields. Biopolymers 68:383–394.CrossRefGoogle Scholar
  113. Patel, S., and C. L. Brooks III. 2004. CHARMM fluctuating charge force field for proteins: I Parameterization and application to bulk organic liquid simulations. J. Comput. Chem. 25:1–15.CrossRefGoogle Scholar
  114. Patel, S., A. D. MacKerell, Jr., and C. L. Brooks III. 2004. CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J. Comput. Chem. 25:1504–1514.CrossRefGoogle Scholar
  115. Ponder, J. W., and D. A. Case. 2003. Force fields for protein simulations. Adv. Protein Chem. 66:27–85.CrossRefGoogle Scholar
  116. Price, D. J., and C. L. Brooks III. 2002. Modern protein force fields behave comparably in molecular dynamics simulations. J. Comput. Chem. 23:1045–1057.CrossRefGoogle Scholar
  117. Qui, D., P. S. Shenkin, F. P. Hollinger, and W. C. Still. 1997. The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J. Phys. Chem. A 101:3005–3014.CrossRefGoogle Scholar
  118. Ramachandran, G. N., C. Ramakrishnan, and V. Sasisekharan. 1963. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7:95–99.CrossRefGoogle Scholar
  119. Rappé, A. K., C. J. Colwell, W. A. Goddard III, and W. M. Skiff. 1992. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114:10024–10035.CrossRefGoogle Scholar
  120. Reiher, W. E. 1985. Theoretical Studies of Hydrogen Bonding Ph.D. thesis, Harvard University.Google Scholar
  121. Rick, S. W., and S. J. Stuart. 2002. Potentials and algorithms for incorporating polarizability in computer simulations. Rev. Comput. Chem. 18:89–146.CrossRefGoogle Scholar
  122. Rick, S. W., S. J. Stuart, J. S. Bader, and B. J. Berne. 1995. Fluctuating charge force fields for aqueous solutions. J. Mol. Liq. 65/66:31–40.CrossRefGoogle Scholar
  123. Rizzo, R. C., and W. L. Jorgensen. 1999. OPLS all-atom model for amines: Resolution of the amine hydration problem. J. Am. Chem. Soc. 121:4827–4836.CrossRefGoogle Scholar
  124. Schaefer, M., C. Bartels, F. LeClerc, and M. Karplus. 2001. Effective atom volumes for implicit solvent models: Comparison between Voronoi volumes and minimum fluctuation volumes. J. Comput. Chem. 22:1857–1879.CrossRefGoogle Scholar
  125. Schaefer, M., and M. Karplus. 1996. A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem. 100:1578–1599.CrossRefGoogle Scholar
  126. Schuler, L. D., X. Daura, and W. F. van Gunsteren. 2001. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22:1205–1218.CrossRefGoogle Scholar
  127. Shirts, M. R., J. W. Pitera, W. C. Swope, and V. S. Pande. 2003. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. J. Chem. Phys. 119:5740–5761.ADSCrossRefGoogle Scholar
  128. Simmerling, C., T. Fox, and P. A. Kollman. 1998. Use of locally enhanced sampling in free energy calculations: Testing and application to the α → β anomerization of glucose. J. Am. Chem. Soc. 120:5771–5782.CrossRefGoogle Scholar
  129. Singh, U. C., and P. A. Kollman. 1984. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5:129–145.CrossRefGoogle Scholar
  130. Steinbach, P. J. 2004. Exploring peptide energy landscapes: A test of force fields and implicit solvent models. Proteins 57:665–677.CrossRefGoogle Scholar
  131. Still, W. C., A. Tempczyk, R. C. Hawley, and T. Hendrickson. 1990. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112:6127–6129.CrossRefGoogle Scholar
  132. Sugita, Y., and Y. Okamoto. 1999. Replica-exchange molecular dynamics methods for protein folding. Chem. Phys. Lett. 314:141–151.CrossRefADSGoogle Scholar
  133. Sun, H. 1998. COMPASS: An ab inito force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys. Chem. B 102:7338–7364.CrossRefGoogle Scholar
  134. Tuckerman, M., B. J. Berne, and G. J. Martyna. 1992. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97:1990–2001.ADSCrossRefGoogle Scholar
  135. Tuckerman, M. E., and G. J. Martyna. 2000. Understanding modern molecular dynamics: Techniques and applications. J. Phys. Chem. B 104:159–178.CrossRefGoogle Scholar
  136. van Gunsteren, W. F. 1987. GROMOS. Groningen Molecular Simulation Program Package. Groningen, University of Groningen.Google Scholar
  137. van Gunsteren, W. F., S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, A. E. Mark, W. R. P. Scott, and I. G. Tironi. 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Zürich, BIOMOS b.v.Google Scholar
  138. Vargas, R., J. Garza, B. P. Hay, and D. A. Dixon. 2002. Conformational study of the alanine dipeptide at the MP2 and DFT levels. J. Phys. Chem. A 106:3213–3218.CrossRefGoogle Scholar
  139. Villa, A., and A. E. Mark. 2002. Calculation of the free energy of solvation for neutral analogs of amino acid side chains. J. Comput. Chem. 23:548–553.CrossRefGoogle Scholar
  140. Wang, J., and P. A. Kollman. 2001. Automatic parameterization of force field by systematic search and genetic algorithms. J. Comput. Chem. 22:1219–1228.CrossRefGoogle Scholar
  141. Warshel, A., and S. Lifson. 1970. Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpy of alkanes. J. Chem. Phys. 53:582–594.CrossRefADSGoogle Scholar
  142. Weiner, P. K., and P. A. Kollman. 1981. AMBER: Assisted Model Building with Energy Refinement. A general program for modeling molecules and their interactions. J. Comput. Chem. 2:287–303.CrossRefGoogle Scholar
  143. Weiner, S. J., P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner. 1984. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106:765–784.CrossRefGoogle Scholar
  144. Weiner, S. J., P. A. Kollman, D. T. Nguyen, and D. A. Case. 1986. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 7:230–252.CrossRefGoogle Scholar
  145. Yin, D., and A. D. MacKerell, Jr. 1996. Ab initio calculations on the use of helium and neon as probes of the van der Waals surfaces of molecules. J. Phys. Chem. 100:2588–2596.CrossRefGoogle Scholar
  146. Yin, D., and A. D. MacKerell, Jr. 1998. Combined ab initio/empirical approach for the optimization of Lennard-Jones parameters. J. Comput. Chem. 19:334–348.CrossRefGoogle Scholar
  147. Zhang, L. Y., E. Gallicchio, R. A. Friesner, and R. M. Levy. 2001. Solvent models for protein—ligand binding: Comparison of implicit solvent Poisson and surface generalized Born models with explicit solvent simulations. J. Comput. Chem. 22:591–607.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Alexander D. MacKerellJr.

There are no affiliations available

Personalised recommendations