Alternate Spaces For Model Deformation: Application Of Stop And Go Active Models To Medical Images

  • Oriol Pujol
  • Petia Radeva
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

The role of deformable models [1, 2, 3], in medical image analysis [4] has been increasing over the past two decades. The location of a pathology, the study of anatomical structures, computer-assisted surgery, or quantification of tissue volumes are a few of the applications in which deformable models have proved to be very effective. Due to their importance, the study and improvement of these models is still a challenge [5, 6, 7, 8]. These techniques are used to give a highlevel interpretation of low-level information such as contours or isolated regions.


Local Binary Pattern Model Deformation Deformable Model Active Contour Model Curvature Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Kass M, Witkin A, Terzopoulos D. 1988. Snakes: active contour models. Int J Comput Vision 1:321-331.CrossRefGoogle Scholar
  2. 2.
    Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric model for actives contours. Num Math 66:1-31.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cohen LD. On active contour models and ballons. Comput Vision Graphics Image Process: Image Understand 53(2):211-218, 1991.MATHGoogle Scholar
  4. 4.
    McInerney T, Terzopoulos D. 1996. Deformable models in medical images analysis: a survey. Med Image Anal 1(2):91-108.CrossRefGoogle Scholar
  5. 5.
    Paragios N, Deriche R. 1999. Geodesic active contours for supervised texture segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, Vol. 2, pp. 422-427. Washington, DC: IEEE Computer Society.Google Scholar
  6. 6.
    Pujol O, Radeva P. 2004. Texture segmentation by statistic deformable models. Int J Image Graphics 4(3):433-452.CrossRefGoogle Scholar
  7. 7.
    Jehan-Besson S, Barlaud M, Aubert G. 2003. DREAMS: deformable regions driven by an Eulerian accurate minimization method for image and video segmentation. Submitted to Int J Comput Vision.Google Scholar
  8. 8.
    Pujol O, Gil D, Radeva P. 2005. Fundamentals of stop and go active models. J Image Vision Computing 23(8):681-691.CrossRefGoogle Scholar
  9. 9.
    McInerney T, Terzopoulos D. 2000. T-Snakes: topology adaptative snakes. Med Image Anal 4:73-91.CrossRefGoogle Scholar
  10. 10.
    Osher S, Sethian JA. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J Comput Phys 79:12-49.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ronfard R. 1994. Region-based strategies for active contour models. Int J Comput Vision 13(2):229-251.CrossRefGoogle Scholar
  12. 12.
    Zhu SC. 1994. Region competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. Technical Report 94-10, Harvard Robotics Laboratory.Google Scholar
  13. 13.
    Yezzi A, Tsai A, Willsky A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings of the seventh IEEE international conference on computer vision, pp. 898-903. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  14. 14.
    Chakraborty A, Staib L, Duncan J. 1996. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans Med Imaging 15:859-870.CrossRefGoogle Scholar
  15. 15.
    Samson C, Blanc-F éraud L, Aubert G, Zerubia J. 1999. A level set model for image classification. In Proceedings of the second international conference on scale-space theories in computer vision. Lecture notes in computer science, Vol. 1682, pp. 306-317.CrossRefGoogle Scholar
  16. 16.
    Xu C, Yezzi A, Prince J. 2000. On the relationship between parametric and geometric active contours. In Proceedings of the 34th Asilomar conference on signals, systems, and computers, pp. 483-489. Washington, DC: IEEE Computer Society.Google Scholar
  17. 17.
    Evans LC. 1993. Partial differential equations. Berkeley Mathematics Lecture Notes, vol. 3B. Berkeley: UCB Press.Google Scholar
  18. 18.
    Tveito A, Winther R. 1998. Introduction to partial differential equations. Texts in Applied Mathematics, no 29. New York: Springer.Google Scholar
  19. 19.
    Xu C, Prince JL. 1998. Generalized gradient vector flow: external forces for active contours. Signal Process Int J 71(2):132-139.Google Scholar
  20. 20.
    Gil D, Radeva P. 2005. Curvature vector flow to assure convergent deformable models. Comput Vision Graphics Image Process 99(1):118-125. EMMCVP’03.Google Scholar
  21. 21.
    Haralick R, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Trans Syst Mach Cybern 3:610-621.CrossRefGoogle Scholar
  22. 22.
    Tuceryan M. 1994. Moment based texture segmentation. Pattern Recognit Lett 15:659-668.CrossRefGoogle Scholar
  23. 23.
    Lindeberg T. 1994. Scale-space theory in computer vision. New York: Kluwer Academic.Google Scholar
  24. 24.
    Jain A, Farrokhnia F. 1990. Unsupervised texture segmentation using gabor filters. Proceedings of the international conference on systems, man and cybernetics, pp. 14-19. Washington, DC: IEEE Computer Society.Google Scholar
  25. 25.
    Mallat S. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Machine Intell 11(7):674-694.MATHCrossRefGoogle Scholar
  26. 26.
    Mandelbrot B. 1983. The fractal geometry of nature. New York: W.H. Freeman.Google Scholar
  27. 27.
    Ojala T, Pietikainen M, Maenpaa T. 2002. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Machine Intell 24(7):971-987.CrossRefGoogle Scholar
  28. 28.
    Julesz B. 1962. Visual pattern discrimination. IRE Trans Inf Theory, 8:84-92.CrossRefGoogle Scholar
  29. 29.
    P. Ohanian, Dubes R. 1992. Performance evaluation for four classes of textural features. Pattern Recognit 25(8):819-833.CrossRefGoogle Scholar
  30. 30.
    Salembier P, Garrido L. 2000. Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans Image Process 9(4):561-576.CrossRefGoogle Scholar
  31. 31.
    Duda R, Hart P. 2001. Pattern classification, 2d ed. New York: Wiley-Interscience.Google Scholar
  32. 32.
    Paragios N, Deriche R. 1999. Unifying boundary and region-based information for geodesic active tracking. In Proceedings of the IEEE conference on computer vision and pattern recog- nition, Vol. 2, pp. 300-305. Washington, DC: IEEE Computer Society.Google Scholar
  33. 33.
    Pujo O. A semi-supervised statistical framework and generative snakes for IVUS analysis. PhD dissertation, Universidad Aut ónoma de Barcelona.Google Scholar
  34. 34.
    Hofmann T, Puzicha J, Buhmann JM. 1998. Unsupervised texture segmentation in a determin- istic annealing framework. IEEE Trans Pattern Anal Machine Intell 20(8):803-818.CrossRefGoogle Scholar
  35. 35.
    Sapiro G. 1997. Color snakes. Comput Vision Image Understand 68(2):247-253.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Oriol Pujol
    • 1
  • Petia Radeva
    • 2
  1. 1.Departamento Matemática Aplicada I AnálisiUniversidad de BarcelonaSpain
  2. 2.Centre de Visió per ComputadorUniversidad Autónoma de BarcelonaSpain

Personalised recommendations