Advertisement

Medical Image Segmentation Based On Deformable Models And Its Applications

  • Yonggang Wang
  • Qiang Guo
  • Yun Zhu
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Deformable models, including parametric deformable models and geometric deformable models, have been widely used for segmenting and identifying anatomic structures in medical image analysis. This chapter discusses medical image segmentation based on deformable models and its applications. We first study several issues and methods related to medical image segmentation and then review deformable models in detail. Three applications in different medical fields are introduced: tongue image segmentation in Chinese medicine, cerebral cortex segmentation in MR images, and cardiac valve segmentation in echocardiographic sequences.

Keywords

Image Segmentation Deformable Model Active Contour Model Medical Image Segmentation Snake Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Duncan JS, Ayache N. 2000. Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Machine Intell 22:85-106.Google Scholar
  2. 2.
    Gupta A, Kurowski Lv, Singh A, Geiger D, Liang CC, Chiu MY, Adler LP, Haacke M, Wilson DL. 1993. Cardiac MR image segmentation using deformable models. In Proceedings of the 1993 IEEE conference on computers in cardiology, pp. 747-750. Washington, DC: IEEE Computer Society.Google Scholar
  3. 3.
    Bezdek JC, Hall LO, Clarke LP. 1993. Review of MR image segmentation techniques using pattern recognition. Med Phys 20:1033-1048.Google Scholar
  4. 4.
    Udupa JK, Samarasekera S. 1996. Fuzzy connectedness and object definition: theory, algo- rithms and applications in image segmentation. Graphical Models Image Process 58:246-261.Google Scholar
  5. 5.
    Pham DL, Prince JL. 1999.Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737-752.Google Scholar
  6. 6.
    Simmons A, Tofts PS, Barker GJ, Arridge SR. 1994. Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Imaging 32:121-128.Google Scholar
  7. 7.
    Pham DL, Xu C, Prince JL. 2000. Current methods in medical image segmentation. Annu Rev Biomed Engineer 2:315-337 .Google Scholar
  8. 8.
    Wells WM, Grimson WEL, Kikins R, Jolesz FA. 1996. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15:429-442.Google Scholar
  9. 9.
    Guillemaud R, Brady M. 1997. Estimating the bias field of MR images. IEEE Trans Med Imaging 16:238-251.Google Scholar
  10. 10.
    Styner M, Brechbuhler C, Szekely G, Gerig G. 2000. Parametric estimate of intensity inho- mogeneities applied to MRI. IEEE Trans Med Imaging 19:153-165.Google Scholar
  11. 11.
    Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. 2002. A modified fuzzy c- means algorithm for bias field estimated and segmentation of MRI data. IEEE Trans Med Imaging 21:193-199.Google Scholar
  12. 12.
    Zhang Y, Brady M, Smith S. 2001. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45-57.Google Scholar
  13. 13.
    McInerney T, Terzopoulos D. 1996. Deformable models in medical image analysis: a survey. Med Image Anal 1:91-108.Google Scholar
  14. 14.
    Fischler M, Elschlager R. 1973. The representation and matching of pictoral structures. IEEE Trans Comput 22:67-92.Google Scholar
  15. 15.
    Lipson P,Yuille A, Keefe DO, Cavanaugh J, Taaffe J, Rosenthal D. 1990. Deformable templates for feature extraction from medical images. In Proceedings of the first European conference on computer vision (ECCV’90), pp. 477-484. New York: Springer.Google Scholar
  16. 16.
    Staib LH, Duncan JS. 1992. Boundary finding with parametrically deformable models. IEEE Trans Pattern Anal Machine Intell 14:1061-1075.Google Scholar
  17. 17.
    Staib LH, Duncan JS. 1996. Model-based deformable surface finding for medical images. IEEE Trans Med Imaging 78:720-731.Google Scholar
  18. 18.
    Mortensen EN, Barrett WA. 1998. Interactive segmentation with intelligent scissors. Graphical Models Image Process 60:349-384.MATHGoogle Scholar
  19. 19.
    Falcþo AX, Udupa JK, Samarasekera S, Sharma S, Hirsch BE, Lotufo RdA. 1998. User- steered image segmentation paradigms: live wire and live lane. Graphical Models Image Process 60(4):233-260.Google Scholar
  20. 20.
    Boykov Y, Jolly M-P. 2000. Interactive organ segmentation using graph cuts. In Proceedings of the third international conference on medical image computing and computer-assisted intervention (MICCAI’2000). Lecture notes in computer science, Vol. 1935, pp. 276-286. New York: Springer.Google Scholar
  21. 21.
    Rother C, Kolmogorov V, Blake A. 2004. GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans Graphics 23:309-314.Google Scholar
  22. 22.
    Haralick RM, Shapiro LG. 1985. Image segmentation techniques. Comput Vision Graphics Image Process 29:100-132.Google Scholar
  23. 23.
    Pal NR, Pal SK. 1993. A review on image segmentation techniques. Pattern Recognit 26(9):1277-1294.Google Scholar
  24. 24.
    Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML. 1995. MRI segmentation: methods and applications. Magn Reson Imaging 13:343-368.Google Scholar
  25. 25.
    Hall LO, BensaidAM, Clarke LP,Velthuizen RP, Silbiger MS, Bezdek JC. 1992.A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Networks 3:672-682.Google Scholar
  26. 26.
    Suri JS, Singh S, Reden L. 2002. Computer vision and pattern recognition techniques for 2d and 3d mr cerebral cortical segmentation (part i): a state-of-the-art review. Pattern Anal Appl 5:46-76.MathSciNetGoogle Scholar
  27. 27.
    Suetens P, Bellon E, Vandermeulen D, Smet M, Marchal G, Nuyts J, Mortelmans L. 1993. Image segmentation: methods and applications in diagnostic radiology and nuclear medicine. Eur J Radiol 17:14-21.Google Scholar
  28. 28.
    Sahoo PK, Soltani S, Wong AKC. 1988. A survey of thresholding techniques. Comput Vision Graphics Image Process 41:233-260.Google Scholar
  29. 29.
    Lim KO, Pfefferbaum A. 1989. Segmentation of MR brain images into cerebrospinal fulid spaces, white and gray matter. J Comput Assist Tomogr 13:588-593.CrossRefGoogle Scholar
  30. 30.
    Shareef N, Wang DL, Yagel R. 1999. Segmentation of medical images using LEGION. IEEE Trans Med Imaging 18:74-91.Google Scholar
  31. 31.
    Adams R, Bischof L. 1994. Seeded region growing. IEEE Trans Pattern Anal Machine Intell 16:641-647.Google Scholar
  32. 32.
    Zucker SW. 1976. Region growing: childhood and adolescence. Comput Vision Graphics Image Process 5:382-399.Google Scholar
  33. 33.
    Cline HE, Dumoulin CL, Hart HR, Lorensen WE, Ludke S. 1987. 3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm. Magn Reson Imaging 5:345-352.Google Scholar
  34. 34.
    Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Machine Intell 6:721-741.MATHGoogle Scholar
  35. 35.
    Li SZ. 1995. Markov random field modeling in computer vision. London: Springer-Verlag.Google Scholar
  36. 36.
    Held K, Kops ER, Krause BJ, Wells WM, Kikinis R. 1997. Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16:878-886.Google Scholar
  37. 37.
    Rajapakse JC, Giedd JN, Rapoport JL. 1997. Statistical approach to segmentation of single- channel cerebral MR images. IEEE Trans Med Imaging 16:176-186.Google Scholar
  38. 38.
    Davis LS. 1975. A survey of edge detection techniques. Comput Vision Graphics Image Process 4:248-270.Google Scholar
  39. 39.
    Argyle E. 1971. Techniques for edge detection. Proc IEEE 59:285-287.Google Scholar
  40. 40.
    Farag AA, Delp EJ. 1995. Edge linking by sequential search. Pattern Recognit 28:611-633.Google Scholar
  41. 41.
    Montanari U. 1971. On the optimal detection of curves in noisy pictures. Commun ACM 14:335-345.MATHGoogle Scholar
  42. 42.
    Rifai H, Bloch I, Hutchinson S, Wiart J, Garnero L. 2000. Segmentation of the skull in MRI volumes using deformable model and taking the partial-volume effect into account. Med Image Anal 4:219-233.Google Scholar
  43. 43.
    Kass M, Witkin A, Terzopoulos D. 1988. Snakes: active contour models. Int J Comput Vision 1:321-331.Google Scholar
  44. 44.
    Cohen LD. 1991. On active contour models and balloons. Comput Vision Graphics Image Process: Image Understand 53:211-218.MATHGoogle Scholar
  45. 45.
    Leymarie F, Levine MD. 1993. Tracking deformable objects in the plane using an active contour model. IEEE Trans Pattern Anal Machine Intell 15:617-634.Google Scholar
  46. 46.
    Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7:359-369.MATHMathSciNetGoogle Scholar
  47. 47.
    Xu C, Anthony Y, Prince JL. 2000. On the relationship between parametric and geometric active contours. In Proceedings of the 34th Asilomar conference on signals, systems, and computers, pp. 483-489. Washington, DC: IEEE Computer Society.Google Scholar
  48. 48.
    Osher S, Sethian J. 1988. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. J Comput Phys 79:12-49.MATHMathSciNetGoogle Scholar
  49. 49.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22:61-79.MATHGoogle Scholar
  50. 50.
    Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A. 1997. A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16:199-209.Google Scholar
  51. 51.
    Teo PC, Sapiro G, Wandell BA. 1997. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imaging 16:852-863.Google Scholar
  52. 52.
    Malladi R, Sethian JA, Vemuri BC. 1995. Shape modeling with front propagation: A level set approach. IEEE Trans Pattern Anal Machine Intell 17:158 -175.Google Scholar
  53. 53.
    Chakraborty A, Staib L, Duncan J. 1996. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans Med Imaging 15:859-870.Google Scholar
  54. 54.
    Zhu S,Yuille A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Machine Intell 18:884-900.Google Scholar
  55. 55.
    Hedden J, Boyce J. 1990. Image segmentation by unifying region and boundary information. IEEE Trans Pattern Anal Machine Intell 12:929-948.Google Scholar
  56. 56.
    Yezzi A, Tsai A, Willsky A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings of the seventh IEEE international conference on computer vision, pp. 898-903. Washington, DC: IEEE Computer Society.Google Scholar
  57. 57.
    Paragios NK. 2000. Geodesic active regions and level set methods: contributions and appli- cations in artifical vision, PhD dissertation, University of Nice/Sophie Antipolis, France.Google Scholar
  58. 58.
    Chan T, Vese L. 2001. Active contours without edges. IEEE Trans Image Process 10:266-277.MATHGoogle Scholar
  59. 59.
    Zeng X, Staib LH, Schultz RT, Duncan JS. 1999. Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Trans Med Imaging 18:927-937.Google Scholar
  60. 60.
    Chiou GI, Hwang JN. 1995. A neural network-based stochastic active-contour model (NNS- SNAKE) for contour finding of distinct features. IEEE Trans Med Imaging 4:1407-1416.Google Scholar
  61. 61.
    Alirezaie J, Jernigan ME, Nahmias C. 1997. Neural network-based segmentation of magnetic resonance images of the brain. IEEE Trans Nucl Sci 44:194-198.Google Scholar
  62. 62.
    Suri JS. 1999. Active contours vs. learning: computer vision techniques in CT, MR and x-ray cardiac imaging. In Proceedings of the fifth conference on pattern recognition and information processing, pp. 273-277. Washington, DC: IEEE Computer Society.Google Scholar
  63. 63.
    Cohen LD, Cohen I. 1993. Finite element methods for active contour models and ballons for 2d and 3d images. IEEE Trans Pattern Anal Machine Intell 15:1131-1147.Google Scholar
  64. 64.
    Morse PM, Feshbach H. 1953. Methods of theoretical physics. New York: McGraw-Hill.MATHGoogle Scholar
  65. 65.
    Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric model for active contours in image processing. Num Math 66:1-31.MATHMathSciNetGoogle Scholar
  66. 66.
    Mumford D, Shah J. 1989. Optimal approximation by piecewise smooth functions and asso- ciated variational problems. Commun Pure Appl Math 42:577-685.MATHMathSciNetGoogle Scholar
  67. 67.
    Chien T, Chien M. 1982. A study on tongue diagnosis. Shanghai: Shanghai Science Book.Google Scholar
  68. 68.
    Cai Y. 2002. A novel imaging system for tongue inspection. In Proceedings of the IEEE instrumentation and measurement technology conference, pp. 159-163. Washington, DC: IEEE Computer Society.Google Scholar
  69. 69.
    Chiu CC. 2000. A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue. Comput Methods Prog Biomed 61:77-89.Google Scholar
  70. 70.
    Li CH,Yuen PC. 2002. Tongue image matching using color content. Pattern Recognit 35:407-419.MATHGoogle Scholar
  71. 71.
    Pang B, Wang K, Zhang D, Zhang F. 2002. On automated tongue image segmentation in Chinese medicine. In Proceedings of the 16th international conference on pattern recognition, pp. 616-619. Washington, DC: IEEE Computer Society.Google Scholar
  72. 72.
    Pang B, Zhang D, Li NM, Wang K. 2004. Computerized tongue diagnosis based on Bayesian networks. IEEE Trans Biomed Eng 51:1803-1810.Google Scholar
  73. 73.
    Pang JH, Kim JE, Park KM, Chang SO, Kim By. 2002. Development of the digital tongue inspection system with image analysis. In Proceedings of the second joint EMBS/BMES conference, pp. 1033-1034. Washington, DC: IEEE Computer Society.Google Scholar
  74. 74.
    Zhao ZX, Wang AM, Shen LS. 1999. An automatic tongue analyzer of Chinese medicine based on color image processing. In Proceedings of the fourth international conference on electronic measurement and instrumentation, pp. 830-834. Washington, DC: IEEE Computer Society.Google Scholar
  75. 75.
    Wang Y, Zhou Y, Yang J, Xu Q. 2004. A tongue analysis system for tongue diagnosis in traditional Chinese medicine. In Proceedings of the international symposium on computa- tional and information sciences (CIS’04). Lecture notes in computer science, Vol. 3314, pp. 1181-1186. New York: Springer.Google Scholar
  76. 76.
    Guan-Song L, Xu J-G, Gao D-Y. 2003.An automatic approach for tongue image segmentation. Comput Engineer 29:63-64 [in Chinese].Google Scholar
  77. 77.
    Sun Y, Luo Y, Zhou C, Xu J, Zhang Z. 2003. A method based on split-combining algorithm for the segmentation of the image of tongue. Chinese J Image Graphics 8:1395-1399 [in Chinese].Google Scholar
  78. 78.
    Dumitras A, Venetsanopoulos AN. 2000. Multi-colored snakes in the RGB color snake. In Proceedings of the IEEE Pacific-Rim conference on multimedia (PCM’2000), pp. 240-244. Washington, DC: IEEE Computer Society.Google Scholar
  79. 79.
    Hamarneh G, Chodorowski A, Gustavsson T. 2000. Active contour models: application to oral lesion detection in color images. In Proceedings of the IEEE international conference on systems, man, and cybernetics pp. 2458-2463. Washington, DC: IEEE Computer Society.Google Scholar
  80. 80.
    DeCarlo D, Metaxas D. 1996. Blended deformable models. IEEE Trans Pattern Anal Machine Intell 18:443-448.Google Scholar
  81. 81.
    Dumitras A, Venetsanopoulos AN. 2001. On the application of parametric snake models to the localization of object boundaries in color images. In Proceedings of the fourth IEEE workshop on multimedia signal processing pp. 167-172. Washington, DC: IEEE Computer Society.Google Scholar
  82. 82.
    Dumitras A, Venetsanopoulos A. 2001. Angular map-driven snakes with application to object shape description in color images. IEEE Trans Image Process 10:1851-1859.MATHGoogle Scholar
  83. 83.
    Jones TN, Metaxas DN. 1998. Image segmentation based on the integration of pixel affinity and deformable models. In Proceedings of the international conference on computer vision and pattern recongnition (ICCVPR’1998), pp. 330-337. Washington, DC: IEEE Computer Society.Google Scholar
  84. 84.
    Sapiro G. 1997. Color snakes. Comput Vision Image Understand 68:247-253.Google Scholar
  85. 85.
    Nevatia R. 1977. A color-edge detector and its use in scene segmentation. IEEE Trans Syst Mach Cybern 7:820-826.Google Scholar
  86. 86.
    Scharcanski J, Venetsanopoulos AN. 1997. Edge detection of color images using directional operators. IEEE Trans Circ Syst Video Technol 7:397-401.Google Scholar
  87. 87.
    Zenzo SD. 1986. A note on the gradient of a multi-image. Comput Vision Graphics Image Process 36:116-125.Google Scholar
  88. 88.
    Ruzon MA, Tomasi C. 2001. Edge, junction, and corner detection using color distribution. IEEE Trans Pattern Anal Machine Intell 23:1281-1295.Google Scholar
  89. 89.
    Tschumperl é D. 2002. PDEs based regularization of multivalued images and applications. University of Nice/Sophie Antipolis, France.Google Scholar
  90. 90.
    Sapiro G, Ringach DL. 1996. Anisotropic diffusion of mulitvalued images with applications to color filtering. IEEE Trans Pattern Anal Machine Intell 5:1582-1586.Google Scholar
  91. 91.
    Ohta Y, Kanade T, Sakai T. 1980. Color information for region segmentation. Comput Graphics Image Process 13:222-241.Google Scholar
  92. 92.
    Kapur T. 1999. Model-based three-dimensional medical image segmentation. PhD dissertation. Artificial Intelligence Laboratory, Massachusettes Institute of Technology.Google Scholar
  93. 93.
    Xu C, Pham DL, Rettmann ME,Yu DN, Prince JL. 1999. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18:467-480.Google Scholar
  94. 94.
    Bomans M, H öhne K-H, Tiede U, Riemer M. 1990. 3D segmentation of MR images of the head for 3D display. IEEE Trans Med Imaging 9:177-183.Google Scholar
  95. 95.
    Leventon ME. 2000. Statistical models in medical image analysis. PhD dissertation, Massachussates Institute of Technology.Google Scholar
  96. 96.
    Leventon ME, Grimson WEL, Faugeras OD. 2000. Statistical shape influence in geodesic active contours. In Proceedings of the international conference on computer vision and pattern recognition, pp. 1316-1323. Washington, DC: IEEE Computer Society.Google Scholar
  97. 97.
    Han X, Xu C, Prince JL. 2003. A topology preserving level set method for geometric de- formable models. IEEE Trans Pattern Anal Machine Intell 25:755-768.Google Scholar
  98. 98.
    Chan TF, Vese LA. 2000. Image segmentation using level sets and the piecewise-constant Mumford-Shah model. CAM Report 00-14, University of California at Los Angeles.Google Scholar
  99. 99.
    Paragios N, Deriche R. 2000. Coupled geodesic active regions for image segmentation: a level set approach. In Proceedings of the European conference on computer vision (ECCV), pp. 224-240. New York: Springer.Google Scholar
  100. 100.
    Bozma HI, Duncan JS. 1994. A game-theoretic approach to integration of modules. IEEE Trans Pattern Anal Machine Intell 16:1074-1086.Google Scholar
  101. 101.
    Kwan RK-S, Evans AC, Pike GB. 1996. An extensible MRI simulator for post-processing evaluation. In Proceedings of the international conference on visualization in biomedical computing (VBC’96). Lecture notes in computer science, Vol. 1131, pp. 135-140. New York: Springer.Google Scholar
  102. 102.
    Rajapakse JC, Kruggel F. 1998. Segmentation of MR images with intensity inhomogeneities. Image Vision Comput 16(3):165-180.Google Scholar
  103. 103.
    Daniel C, Florian T, Joachim W, Christoph S. 2002. Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah function. Int J Comput Vision 50:295-313.MATHGoogle Scholar
  104. 104.
    Ivana M, Slawomir K, James DT. 1998. Segmentation and tracking in echocardiographic sequences: active contour guided by optical flow estimates. IEEE Trans Med Imaging 17:274-284.Google Scholar
  105. 105.
    Leventon ME, Grimson WEL, Faugeras OD. 2000. Statistical shape influence in geodesic active contours. In Proceedings of the international conference on computer vision and pattern recognition, pp. 1316-1323. Washington, DC: IEEE Computer Society.Google Scholar
  106. 106.
    Chen Y, Thiruvenkadam H, Tagare H, Huang F, Wilson D. 2002. Using prior shapes in geometric active contours in a variational framework. Int J Comput Vision 50:315-328.MATHGoogle Scholar
  107. 107.
    Perona P, Malik J. 1990. Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12:629-639.Google Scholar
  108. 108.
    Whitaker RT, Xue X. 2001. Variable-conductance, level-set curvature for image denoising. In Proceedings of the international conference on image processing, pp. 142-145. Washington, DC: IEEE Computer Society.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yonggang Wang
    • 1
  • Qiang Guo
    • 1
  • Yun Zhu
    • 1
  1. 1.Institute of Image Processing and Pattern RecognitionShanghai Jiaotong UniversityChina

Personalised recommendations