Advertisement

Parallel Co-Volume Subjective Surface Method For 3d Medical Image Segmentation

  • Karol Mikula
  • Alessandro Sarti
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

In this chapter we present a parallel computational method for 3D image segmentation. It is based on a three-dimensional semi-implicit complementary volume numerical scheme for solving the Riemannian mean curvature flowof graphs called the subjective surface method. The parallel method is introduced for massively parallel processor (MPP) architecture using the message passing interface (MPI) standard, so it is suitable, e.g., for clusters of Linux computers. The scheme is applied to segmentation of 3D echocardiographic images.

Keywords

Message Passing Interface Color Version Segmentation Function Subjective Surface Piecewise Linear Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Kass M, Witkin A, Terzopulos D. 1987. Snakes: active contour models. Int J Comput Vision 1:321-331.CrossRefGoogle Scholar
  2. 2.
    Gage M, Hamilton RS. 1986. The heat equation shrinking convex plane curves. J Diff Geom 23:69-96.MATHMathSciNetGoogle Scholar
  3. 3.
    Grayson M. 1987. The heat equation shrinks embedded plane curves to round points. J Diff Geom 26:285-314.MATHMathSciNetGoogle Scholar
  4. 4.
    Dziuk G. 1991. Algorithm for evolutionary surfaces. Numer Math 58:603-611.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dziuk G. 1994. Convergence of a semi-discrete scheme for the curve shortening flow. Math Models Methods Appl Sci 4:589-606.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dziuk G. 1999. Discrete anisotropic curve shortening flow. SIAM J Numer Anal 36:1808-1830.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Sev čovi č D. 2001. Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J Numer Anal 61:1473-1501.Google Scholar
  8. 8.
    Sev čovi č D. 2004. Computational and qualitative aspects of evolution of curves driven by curvature and external force. Comput Visualiz Sci, 6(4):211-225.CrossRefGoogle Scholar
  9. 9.
    Sev čovi č D. 2004. A direct method for solving an anisotropic mean curvature flow of planar curve with an external force. Math Methods Appl Sci 27(13):1545-1565.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sev čovi č D. 2006. Evolution of curves on a surface driven by a geodesic curvature and external force. Applic Anal 85(4):345-362.CrossRefGoogle Scholar
  11. 11.
    Osher S, Sethian JA. 1988. Front propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. J Comput Phys 79:12-49.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sethian JA. 1990. Numerical algorithm for propagating interfaces: Hamilton-Jacobi equations and conservation laws. J Diff Geom 31:131-161.MATHMathSciNetGoogle Scholar
  13. 13.
    Sethian JA. 1999. Level set methods and fast marching methods. In Evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. Cambridge: Cambridge UP.Google Scholar
  14. 14.
    Osher S, Fedkiw R. 2003. Level set methods and dynamic implicit surfaces. New York: Springer.MATHGoogle Scholar
  15. 15.
    Sapiro G. 2001. Geometric partial differential equations and image analysis. Cambridge: Cambridge UP.MATHCrossRefGoogle Scholar
  16. 16.
    Handlovi čov á A, Mikula K, Sgallari F. 2003. Semi-implicit complementary volume scheme for solving level set-like equations in image processing and curve evolution. Numer Math 93:675-695.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Frolkovi č P, Mikula K. 2003. Flux-based level set method: a finite volume method for evolv- ing interfaces. Preprint IWR/SFB 2003-15, Interdisciplinary Center for Scientific Computing, University of Heidelberg.Google Scholar
  18. 18.
    Frolkovi č P, Mikula K. 2005. High resolution flux-based level set method. Preprint 2005- 12, Department of Mathematics and Descriptive Geometry, Slovak University of Technology, Bratislava.Google Scholar
  19. 19.
    Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric model for active contours in image processing. Numer Math 66:1-31.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Malladi R, Sethian JA, Vemuri B. 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17:158-174.CrossRefGoogle Scholar
  21. 21.
    Perona P, Malik J. 1990. Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12(7):629-639.CrossRefGoogle Scholar
  22. 22.
    Catt é F, Lions PL, Morel JM, Coll T. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal, 29:182-193.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Weickert J, Romeny BMtH, Viergever MA. 1998. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Processing 7:398-410.CrossRefGoogle Scholar
  24. 24.
    Ka čur J, Mikula K. 1995. Solution of nonlinear diffusion in image smoothing and edge detection. Appl Numer Math 17:47-59.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Ka čur J, Mikula K. 2001. Slow and fast diffusion effects in image processing. Comput Visualiz Sci 3(4):185-195.CrossRefGoogle Scholar
  26. 26.
    Mikula K, Ramarosy N. 2001. Semi-implicit finite volume scheme for solving nonlinear dif- fusion equations in image processing. Numer Math 89(3):561-590.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mikula K, Sgallari F. 2003. Semi-implicit finite volume scheme for image processing in 3D cylindrical geometry. J Comput Appl Math 161(1):119-132.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mikula K. 2002. Image processing with partial diferential equations. In Modern methods in scientific computing and applications, pp. 283-321. Eds A Bourlioux, MJ Gander. NATO Science Ser. II, Vol. 75. Dodrecht: Kluwer Academic.Google Scholar
  29. 29.
    Kriv á Z, Mikula K. 2002. An adaptive finite volume scheme for solving nonlinear diffusion equations in image processing. J Vis Commun Image Represent 13:22-35.CrossRefGoogle Scholar
  30. 30.
    E. B änsch, Mikula K. 1997. A coarsening finite element strategy in image selective smoothing. Comput Visualiz Sci 1(1):53-61.MATHCrossRefGoogle Scholar
  31. 31.
    E. B änsch, Mikula K. 2001. Adaptivity in 3D image processing. Comput Visualiz Sci 4(1):21-30.CrossRefGoogle Scholar
  32. 32.
    Sarti A, Mikula K, Sgallari F. 1999. Nonlinear multiscale analysis of three-dimensional echocar- diographic sequences. IEEE Trans Med Imaging 18:453-466.CrossRefGoogle Scholar
  33. 33.
    Sarti A, Mikula K, Sgallari F, Lamberti C. 2002. Nonlinear multiscale analysis models for fil- tering of 3D + time biomedical images. In Geometric methods in biomedical image processing, pp. 107-128. Ed R Malladi. New York: Springer.Google Scholar
  34. 34.
    Sarti A, Mikula K, Sgallari F, Lamberti C. 2002. Evolutionary partial differential equations for biomedical image processing. J Biomed Inform 35:77-91.CrossRefGoogle Scholar
  35. 35.
    Alvarez L, Lions PL, Morel JM. 1992. Image selective smoothing and edge detection by non- linear diffusion, II. SIAM J Numer Anal 29:845-866.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    L Alvarez, Guichard F, Lions PL, Morel JM. 1993. Axioms and fundamental equations of image processing. Arch Rat Mech Anal 123:200-257.CrossRefMathSciNetGoogle Scholar
  37. 37.
    Mikula K, Sarti A, Lamberti C. 1997. Geometrical diffusion in 3D-echocardiography. In Proceedings of ALGORITMY’97, a conference on scientific computing, pp. 167-181. http://www.math.sk/mikula/msl alg97.pdf
  38. 38.
    Handlovi čov á A, Mikula K, Sarti A. 1999. Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Comput Visualiz Sci 1.(2):179-182.Google Scholar
  39. 39.
    Handlovi čov á A, Mikula K, Sgallari F. 2002. Variational numerical methods for solving non- linear diffusion equations arising in image processing. J Vis Commun Image Represent 13:217-237.CrossRefGoogle Scholar
  40. 40.
    Mikula K. 2001. Solution and applications of the curvature driven evolution of curves and surfaces. In Numerical methods for viscosity solutions and applications, pp. 173-196. Eds M Falcone, Ch Makridakis. Advances in Mathematics for Applied Sciences, Vol. 59. Singapore: World Scientific.Google Scholar
  41. 41.
    Mikula K, Preusser T, Rumpf M, Sgallari F. 2002. On anisotropic geometric diffusion in 3D image processing and image sequence analysis. In Trends in nonlinear analysis, pp. 307-322. Ed M Kirkilionis, et al. New York: Springer.Google Scholar
  42. 42.
    Mikula K, Preusser T, Rumpf M. 2004. Morphological image sequence analysis. Comput Visualiz Sci 6(4):197-209.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Caselles V, Kimmel R, Sapiro G. 1995. Geodesic active contours. In Proceedings of the fifth international conference on computer vision (ICCV’95), pp. 694-699. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  44. 44.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22:61-79.MATHCrossRefGoogle Scholar
  45. 45.
    Caselles V, Kimmel R, Sapiro G, Sbert C. 1997. Minimal surfaces: a geometric three dimen- sional segmentation approach. Numer Math 77:423-451.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. 1995. Gradient flows and geo- metric active contours models. In Proceedings of the fifth international conference on computer vision (ICCV’95), pp. 810-815. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  47. 47.
    Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. 1996. Conformal curvature flows: from phase transitions to active vision. Arch Rat Mech Anal 134:275-301.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Sarti A, Malladi R, Sethian JA. 2000. Subjective surfaces: a method for completing missing boundaries. Proc Natl Acad Sci USA Vol. 12(97):6258-6263.CrossRefMathSciNetGoogle Scholar
  49. 49.
    Sarti A, Citti G. 2001. Subjective surfaces and riemannian mean curvature flow graphs. Acta Math Univ Comenianae 70(1):85-104.MATHMathSciNetGoogle Scholar
  50. 50.
    Sarti A, Malladi R, Sethian JA. 2002. Subjective surfaces: a geometric model for boundary completion. Int J Comput Vision 46(3):201-221.MATHCrossRefGoogle Scholar
  51. 51.
    Evans LC, Spruck J. 1991. Motion of level sets by mean curvature, I. J Diff Geom 33:635-681.MATHMathSciNetGoogle Scholar
  52. 52.
    Mikula K, Sarti A, Sgallari F. 2005. Semi-implicit co-volume level set method in medical image segmentation. In Handbook of biomedical image analysis: segmentation and registration models, pp. 583-626. Ed JS Suri, D Wilson, S Laxminarayan. New York: Springer.CrossRefGoogle Scholar
  53. 53.
    Chen Y-G, Giga Y, Goto S. 1991. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J Diff Geom 33:749-786.MATHMathSciNetGoogle Scholar
  54. 54.
    Crandall MG, Ishii H, Lions PL. 1992. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc 27:1-67.MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Citti G, Manfredini M. 2002. Long time behavior of Riemannian mean curvature flow of graphs. J Math Anal Appl 273(2):353-369.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Corsaro S, Mikula K, Sarti A, Sgallari F. 2004. Semi-implicit co-volume method in 3D image segmentation. Preprint 2004-12, Department of Mathematics and Descriptive Geometry, Slovak University of Technology, Bratislava.Google Scholar
  57. 57.
    Patankar S. 1980. Numerical heat transfer and fluid flow. New York: Hemisphere Publishing.MATHGoogle Scholar
  58. 58.
    Eymard R, Gallouet T, Herbin R. 2000. The finite volume method. In Handbook for numerical analysis, Vol. 7, pp. 715-1022. Ed Ph Ciarlet, JL Lions. New York: Elsevier.Google Scholar
  59. 59.
    Le Veque R. 2002. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge: Cambridge UP.Google Scholar
  60. 60.
    Brenner SC, Scott LR. 2002. The mathematical theory of the finite element method. New York: Springer.Google Scholar
  61. 61.
    Thom ée V. 1997. Galerkin finite element methods for parabolic problems. Berlin: Springer.Google Scholar
  62. 62.
    Deckelnick K, Dziuk G. 1995. Convergence of a finite element method for non-parametric mean curvature flow. Numer Math 72:197-222.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Deckelnick K, Dziuk G. 2000. Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound 2(4):341-359.MATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    Deckelnick K, Dziuk G. 2003. Numerical approximation of mean curvature flow of graphs and level sets. In Mathematical aspects of evolving interfaces, pp. 53-87. Ed L Ambrosio, K Deckelnick, G Dziuk, M Mimura, VA Solonnikov, HM Soner. New York: Springer.Google Scholar
  65. 65.
    Walkington NJ. 1996. Algorithms for computing motion by mean curvature. SIAM J Numer Anal, 33(6):2215-2238.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Saad Y. 1996. Iterative methods for sparse linear systems. Spanish Fork, UT: PWS Publishing.Google Scholar
  67. 67.
    Aoyama Y, Nakano J. 1999. RS/6000 SP: Practical MPI Programming, IBM www.redbooks.ibm.com.
  68. 68.
    Mikula K. 2001. Parallel filtering of three dimensional image sequences. In Science and super-computing at CINECA, pp. 674-677. Ed F Garofalo, M Moretti, M Voli. Bologna: CINECA.Google Scholar
  69. 69.
    Kanizsa G. 1979. Organization in vision. New York: Praeger.Google Scholar
  70. 70.
    Mikula K, Sarti A, Sgallari F. 2006. Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput Visualiz Sci 9(1):23-31.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Karol Mikula
    • 1
  • Alessandro Sarti
    • 2
  1. 1.Department of Mathematics and Descriptive GeometrySlovak University of TechnologySlovakia
  2. 2.Dipartmento di Elettronica, Informatica e SistemisticaUniversity of BolognaItaly

Personalised recommendations