Advertisement

Image Segmentation Using The Level Set Method

  • Yingge Qu
  • Tien-Tsin Wong
  • Pheng Ann Heng
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Construction of a speed function is crucial in applying the level set method to medical image segmentation. In this chapter we focus on the construction of the speed function.

Keywords

Image Segmentation Active Contour Deformable Model Active Contour Model Speed Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Bankman IN. 2000. Handbook of medical imaging: processing and analysis. New York: Acad- emic Press.Google Scholar
  2. 2.
    Kass M, Witkin A, Terzopoulos D. 1987. Snakes: active contour models. In Proceedings of the international conference on computer vision, pp. 261-268. Washington, DC: IEEE Computer Society.Google Scholar
  3. 3.
    Kass M, Witkin A, Terzopoulos D. 1987. Snakes: active contour models. Int J Comput Vision 1:321-331.CrossRefGoogle Scholar
  4. 4.
    Sethian J. 1999. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge UP.MATHGoogle Scholar
  5. 5.
    Xu C, Pham DL, Prince JL. 2000. Medical image segmentation using deformable models. In Handbook of medical imaging, Vol. 2: Medical image processing and analysis, pp. 129-174. Ed M Sonka, JM Fitzpatrick. Bellingham, WA: SPIE Press.Google Scholar
  6. 6.
    Terzopoulos D. 1986. Regularization of inverse visual problems involving discontinuities. IEEE Trans Pattern Anal Machine Intell 8(4):413-424.CrossRefGoogle Scholar
  7. 7.
    Grenander U, Chow Y, Keenan D. 1991. A pattern theoretic study of biological shapes. New York: Springer-Verlag.Google Scholar
  8. 8.
    Miller M, Christensen G, Amit Y, Grenander U. 1993. Mathematical textbook of deformable neuroanatomies. Proc Natl Acad Sci USA 24:11944-11948.Google Scholar
  9. 9.
    Malladi R, Sethian J, Vemuri B. 1995. Shape modeling with front propagation: a level set ap- proach. IEEE Trans Pattern Anal Machine Intell 17:158-175.CrossRefGoogle Scholar
  10. 10.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22:61-79.MATHCrossRefGoogle Scholar
  11. 11.
    Kichenassamy S, Kumar A, Olver PJ, Tannenbaum A, Yezzi AJ. 1995. Gradient flows and geo- metric active contour models. In Proceedings of the fifth international conference on computer vision (ICCV’95), pp. 810-815. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  12. 12.
    Terzopoulos D, Metaxas D. 1991. Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Trans Pattern Anal Machine Intell 13(7):703-714.CrossRefGoogle Scholar
  13. 13.
    Staib L, Duncan J. 1992. Boundary finding with parametrically deformable models. IEEE Trans Pattern Anal Machine Intell 14(11):1061-1075.CrossRefGoogle Scholar
  14. 14.
    Terzopoulos D, Platt J, Barr A, Fleischer K. 1987. Elastically deformable models. Comput Graphics 21(4):205-214.CrossRefGoogle Scholar
  15. 15.
    Cohen LD. 1991. On active contour models and balloons. Comput Vision Graphics Image Process: Image Understand 53(2):211-218.MATHGoogle Scholar
  16. 16.
    Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric model for active contours in image processing. Num Math 66(1):1-31.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Osher S, Sethian J. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12-49.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Osher S, Fedkiw R. 2001. Level set methods: an overview and some recent results. J Comput Phys 169:463-502.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sethian J. 1996. Level set methods. Cambridge: Cambridge UP.MATHGoogle Scholar
  21. 21.
    Lauziere Y, Siddiqi K, Tannenbaum A, Zucker S. 1998. Area and length minimizing flows for segmentation. IEEE Trans Image Process 7:433-444.CrossRefGoogle Scholar
  22. 22.
    Tek H, Kimia BB. 1995. Image segmentation by reaction-diffusion bubbles. In Proceedings of the fifth international conference on computer vision (ICCV’95), pp. 156-162. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  23. 23.
    Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A. 1997. A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16(2):199-209.CrossRefGoogle Scholar
  24. 24.
    Tsai A, Yezzi AJ, Willsky AS. 2000. A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional. In Proceedings of the international conference on computer vision and pattern recognition (CVPR’2000), pp. 1119-1124. Washington, DC: IEEE Computer Society.Google Scholar
  25. 25.
    Geman D, Geman S, Gragne C, Dong P. 1990. Boundary detection by constrained optimization. IEEE Trans Pattern Anal Machine Intell 12(7):609-628.CrossRefGoogle Scholar
  26. 26.
    Hewer GA, Kenney C, Manjunathg BS. 1998. Variational image segmentation using boundary functions. IEEE Trans Image Process 7(9):1269-1282.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Caselles V, Kimmel R, Sapiro G. 1995. Geodesic active contours. In Proceedings of the fifth international conference on computer vision (ICCV’95), pp. 694-699. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  28. 28.
    Paragios N, Deriche R. 2000. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans Pattern Anal Machine Intell 22:266-280.CrossRefGoogle Scholar
  29. 29.
    Leventon M, Grimson E, Faugeras O. 2000. Statistical shape influence in geodesic active contours. In Proceedings of the international conference on computer vision and pattern recognition, Vol. 1, pp. 316-322. Washington, DC: IEEE Computer Society.Google Scholar
  30. 30.
    Chen Y, Thiruvenkadam H, Tagare H, Wilson D. 2002. Using prior shapes in geometric active contours in variational framework. Int J Comput Vision 50:313-328.CrossRefGoogle Scholar
  31. 31.
    Rousson M, Paragios N. 2002. Shape priors for level set representations. In Proceedings of the European conference on computer vision, Vol. 2, pp. 78-93. New York: Springer.Google Scholar
  32. 32.
    Paragios N. 2003. A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773-776.CrossRefGoogle Scholar
  33. 33.
    Cootes T, Beeston C, Edwards G, Taylor C. 1999. A unified framework for atlas matching using active appearance models. In Lecture notes in computer science, Vol. 1613, pp. 311-333. New York: Springer.Google Scholar
  34. 34.
    Wang Y, Staib L. 1998. Elastic model based non-rigid registration incorporating statistical shape information. In Proceedings of the conference on medical image computing and computer-assisted intervention, Vol. 2, pp. 1162-1173. Washington, DC: IEEE Computer Society.Google Scholar
  35. 35.
    Chen Y, Thiruvenkadam S, Tagare H, Huang F, Wilson D, Geiser E. 2001. On the incorporation of shape priors into geometric active contours. In IEEE workshop on variational and level set methods, pp. 145-152. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  36. 36.
    Rousson M, Paragios N. 2002. Shape priors for level set representations. In Proceedings of the European conference on computer vision, Vol. 2, pp. 78-92. New York: Springer.Google Scholar
  37. 37.
    Sethian J. 1985. Curvature and the evolution of fronts. Commun Math Phys 101:487-499.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Malladi R, Sethian J, Vemuri B. 1993. A topology-independent shape modeling scheme. Proc SPIE 2031:246-258.CrossRefGoogle Scholar
  39. 39.
    Malladi R, Sethian J, Vemuri B. Evolutionary front for topology-independent shape modeling and recovery. In Proceedings of the third European conference on computer vision, Vol. 800, pp. 3-13. New York: Springer.Google Scholar
  40. 40.
    Dibos F, Caselles V, Coll T, Catte F. 1995. Automatic contours detection in image processing. In Proceedings of the first world congress of nonlinear analysts, pp. 1911-1921. Hawthorne, NJ: de Gruyter.Google Scholar
  41. 41.
    Malladi R, Sethian J, Hege H, Polthier K. 1997. Level set methods for curvature flow, image enchancement, and shape recovery in medical images. In Proceedings of the first world congress of nonlinear analysts, pp. 329-345. Hawthorne, NJ: de Gruyter.Google Scholar
  42. 42.
    Suri J, Liu K, Singh S, Laxminarayana S, Reden L. 2001. Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review. IEEE Trans Inform Technol Biomed 6(1):9-12.Google Scholar
  43. 43.
    Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. 1996. Conformal curvature flows: from phase transitions to active vision. Arch Rat Mech Anal 134(3):275-301.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Siddiqui K, Lauriere Y, Tannenbaum A, Zucker SW. 1998. Area and length minimizing flows for shape segmentation. IEEE Trans Image Process 7(3):433-443.CrossRefGoogle Scholar
  45. 45.
    Looney CG. 1997. Pattern recognition using neural networks. Oxford: Oxford UP.Google Scholar
  46. 46.
    Yezzi AJ, Tsai A, Willsky AS. 1999. Binary and ternary flows for image segmentation. In Pro- ceedings of the 1999 international conference on Image processing, Vol. 2, pp. 1-5. Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  47. 47.
    Zhang S, Heng P, Liu Z, Tan L, Qiu M, Li Q, Liao R, Li K, Gy GC, Guo Y, Yang X, Liu G, Shan J, Liu J, Zhang W, Chen X, Chen J, Wang J, Chen W, Lu M, You J, Pang X, Xiao H, Xie Y, Cheng C. 2004. The Chinese visible human (CVH) datasets incorporate technical and imaging advances on earlier digital humans. J Anat 204:165-173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yingge Qu
    • 1
  • Tien-Tsin Wong
    • 1
  • Pheng Ann Heng
    • 1
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongChina

Personalised recommendations