Deformable Models And Their Application In Segmentation Of Imaged Pathology Specimens

  • Lin Yang
  • David J. Foran
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Microsopic evaluation of peripheral blood smears and stained tissue analysis are performed routinely in pathology departments worldwide for cancer diagnosis and/or early detection. Recently, there has been an increase in the number of institutions using digital imaging and analysis to assist in assesment before a dignosis is rendered. Before the computer can be used to index, achive, analyze, or classify an imaged specimen, it must first be delineated into “homogeneous” regions based on the similarity of pixel attributes. Deformable models, or snakes, have gained significant attention and have become popular image segmentation methods since their first introduction by Kass, Witkin, and Terzopoulus in 1989. In this chapter, we will review recent advances and improvements on deformable models. We will focus primarily on the application and performance of different types of deformable models for analyzing microscopic pathology specimens.


Segmentation Result Active Contour Finite Difference Method Color Version Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Comaniciu D, Meer P, Foran DJ. 1999. Image-guided decision support system for pathology. Machine Vision Appl 11:213-224.CrossRefGoogle Scholar
  2. 2.
    Foran DJ, Comaniciu D, Meer P, Goodell LA. 2000. Computer-assisted discrimination among malignant lymphomas and leukemia using immunophentyping intelligent image repositories and telemicroscopy. IEEE Trans Inform Technol Biomed 4(4):265-273.CrossRefGoogle Scholar
  3. 3.
    Catalyurek U, Beynon MD, Chang C, Kurc T, Sussman A, Saltz J. 2003. The virtual microscope. IEEE Trans Inform Technol Biomed 7(4):230-248.CrossRefGoogle Scholar
  4. 4.
    Kass M, Witkin A, Terzopoulos D. 1987. Snakes: active contour models. Int J Comput Vision 1:321-331.CrossRefGoogle Scholar
  5. 5.
    Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17(2):158-175.Google Scholar
  6. 6.
    Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric model for active contours in image processing. Num Math 66:1-32.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Leymarie F, Levine MD. 1993. Tracking deformable objects in the plane using an active contour model. IEEE Trans Pattern Anal Machine Intell 15:617-634.CrossRefGoogle Scholar
  8. 8.
    Durikovic R, Kaneda K, Yamashita H. 1995. Dynamic contour: a texture approach and contour operations. Visual Comput 11:277-289.CrossRefGoogle Scholar
  9. 9.
    Terzopoulos D. 1988. The computation of visible-surface representations. IEEE Trans Pattern Anal Machine Intell 10(4):417-438.MATHCrossRefGoogle Scholar
  10. 10.
    Terzopoulos D, Szeliski R. 1992. Tracking with Kalman snakes. In Active vision, pp. 3-20. Ed A Blake, A Yuille. Cambridge: MIT Press.Google Scholar
  11. 11.
    Amini AA, Weymouth TE, Jain RC. 1990. Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Machine Intell 12(9):855-867.CrossRefGoogle Scholar
  12. 12.
    Williams DJ, Shah M. 1992. A fast algorithm for active contoursand curvature estimation. Comput Vision Graphics Image Process: Image Understand 55(1):14-26.MATHGoogle Scholar
  13. 13.
    Cohen LD. 1991. On active contour models and balloons. Comput Vision Graphics Image Process: Image Understand 53(2):211-218.MATHGoogle Scholar
  14. 14.
    Cohen LD, Cohen I. 1993. Finite-element methods for active contour models and balloons for 2d and 3d images. IEEE Trans Pattern Anal Machine Intell 15(11):1131-1147.CrossRefGoogle Scholar
  15. 15.
    Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Xu C, Prince JL. 1998. Generalized gradient vector flow external forces for active contours. Int J Signal Process 71(2):131-139.MATHCrossRefGoogle Scholar
  17. 17.
    Yang L, Meer P, Foran D. 2005. Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans Inform Technol Biomed 9:475-486.CrossRefGoogle Scholar
  18. 18.
    Jehan-Besson S, Gastaud M, Barlaud M, Aubert G. 2003. Region-based active contours using geometrical and statistical features for image segmentation. In Proceedings of the IEEE interna- tional conference on image processing, Vol. 2, pp. 643-646. Washington, DC: IEEE Computer Society.Google Scholar
  19. 19.
    Fedkiw RP, Sapiro G, Shu C. 2003. Shock capturing, level sets, and PDE-based methods in computer vision and image processing: a review of Osher’s contributions. J Comput Phys 185(2):309-341.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chan TF, Vese LA. 2001. A level set algorithm for minimizing the Mumford-Shah functional in image processing. In Proceedings of the IEEE Workshop on Variational and Level Set Methods, pp. 161-171, Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  21. 21.
    Chan TF, Vese LA. Active contours withour edges. IEEE Trans Image Process 10(2):266-277.Google Scholar
  22. 22.
    Arfken G. 1985. Calculus of variations. In Mathematical Methods for Physicists, 3rd ed, pp. 925-962 (chapter 17). Orlando, FL: Academic Press.Google Scholar
  23. 23.
    Smith GD. 1986. Numerical solution of partial differential equations: finite-difference methods, 3d ed. Oxford Applied Mathematics & Computing Science Series. Oxford: Oxford UP.Google Scholar
  24. 24.
    Gradshteyn IS, Ryzhik IM. 2000. Tables of integrals series and products, 6th ed. San Diego, CA: Academic Press.Google Scholar
  25. 25.
    Zenzo SD. 1986. A note on the gradient of a multi-image. Comput Vision Graphics Image Process: Image Understand 33:116-125.Google Scholar
  26. 26.
    Sapiro G, Ringach DL. 1996. Anisotropic diffusion on multivalued images with applications to color filtering. IEEE Trans Image Process 5(11):1582-1586.CrossRefGoogle Scholar
  27. 27.
    Gevers T. 2002. Adaptive image segmentation by combining photometric invariant region and edge information. IEEE Trans Pattern Anal Machine Intell 24(6):848-852.CrossRefGoogle Scholar
  28. 28.
    Kreyszig E. 1991. Differential geometry. New York: Dover Publications.Google Scholar
  29. 29.
    Ray N, Acton ST, Altes T, de Lange EE. 2001. MRI ventilation analysis by merging parametric active contours. In Proceedings of the 2001 international conference on image processing, pp. 861-864. Washington, DC: IEEE Computer Society.Google Scholar
  30. 30.
    Osher S, Sethian JA. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi fomulation. J Comput Phys 79:12-49.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    McInerney T, Terzopoulos D. 1995. A dymamic finite-element surface model for segmentation and tracking in multidimensional medical images with applications on cardiac 4d image analysis. Comput Med Imaging Graphics 19:69-83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lin Yang
    • 1
  • David J. Foran
    • 2
  1. 1.Department of Electrical and Computer EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Center for Biomedical ImagingUMDNJ-Robert Woods Johnson Medical SchoolPiscatawayUSA

Personalised recommendations