Robust Neuroimaging-Based Classification Techniques Of Autistic Vs. Typically Developing Brain

  • Aly A. Farag
  • Rachid Fahmi
  • Manuel F. Casanova
  • Alaa E. Abdel-Hakim
  • Hossam Abd El-Munim
  • Ayman El-Baz
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Autism is a developmental disorder characterized by social deficits, impaired communication, and restricted and repetitive patterns of behavior (American Psychiatry Association, 2000).


Corpus Callosum Diffusion Tensor Imaging Interest Point Color Version Nonrigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Minshew NJ, JB Payton. 1988. New perspectives in autism, part I: the clinical spectrum of autism. J Curr Probl Pediatr 18:561-610.Google Scholar
  2. 2.
    Yeargin-Allsop M, Rice C, Karapurkar T, Doernber N, Boyle C, Murphy C. 2003. Prevalence of autism in a US metropolitan area. JAMA 289:48-55.CrossRefGoogle Scholar
  3. 3.
    Tidmarsh L, Volkmar FR. 2003. Diagnosis and epidemiology of autism spectrum disorders. Can J Psychiatry 48(8):517-525.Google Scholar
  4. 4.
    Wallis C. 2006. Inside the autistic mind. Time 167(20):43-51.Google Scholar
  5. 5.
    Bolton P, Macdonald H, Pickles A, Rios P, Goode S, Crowson M, Bailey A, Rutter M. 1994. A case-control family history study of autism. J Child Psychol Psychiatry 35:877-900.CrossRefGoogle Scholar
  6. 6.
    Minshew NJ, Payton JB. 2003. New perspectives in autism, part II: the differential diagnosis and neurobiology of autism. Curr Probl Pediatr 18:613-694.Google Scholar
  7. 7.
    Stevens MC, Fein DA, Dunn M, Allen D, Waterhouse LH, Feinstein C, Rapin I. 2000. Sub- groups of children with autism by cluster analysis: a longitudinal examination. J Am Acad Child Adolesc Psychiatry 39:346-352.CrossRefGoogle Scholar
  8. 8.
    Kanner L. 1943. Autistic disturbances of affective contact. J Nervous Child 2:250-250.Google Scholar
  9. 9.
    Bailey A, Luthert P, Bolton P, Le Couteur A, Rutter M, Hardin B. 1993. Autism and megalencephaly. Lancet 341:1225-1226.CrossRefGoogle Scholar
  10. 10.
    Davidovitch M, Patterson B, Gartside P. 1996. Head circumference measurements in children with autism. J Child Neurol 11:389-393.CrossRefGoogle Scholar
  11. 11.
    Miles JH, Hadden LL, Takahashi TN, Hillman RE. 2000. Head circumference is an indepen- dent clinical finding associated with autism. Am J Med Gen 95:339-350.CrossRefGoogle Scholar
  12. 12.
    Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N. 2002. Effects of age on brain volume and head circumference in autism. Neurology 59(2):175-183.Google Scholar
  13. 13.
    Courchesne R, Carper R, Akshoomoff N. 2003. Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337-344.CrossRefGoogle Scholar
  14. 14.
    Steg JP, Rapoport JL. 1975. Minor physical anomalies in normal, neurotic, learning disabled, and severely disturbed children. J Autism Dev Disord, 5(4):299-307.CrossRefGoogle Scholar
  15. 15.
    Walker HA. 1997. Incidence of minor physical anomaly in autism. J Autism Child Schizophr 7(2):165-176.CrossRefGoogle Scholar
  16. 16.
    Woodhouse W, Bailey A, Rutter M, Bolton P, Baird G, Le Couteur A. 1996. Head circumference in autism and other pervasive developmental disorders. J Child Psychol Psychiatry 37(6):665-671.CrossRefGoogle Scholar
  17. 17.
    Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA., Courchesne RY. 2001. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245-254.Google Scholar
  18. 18.
    Sparks B, Friedman S, Shaw D, Aylward E, Echelard D, Artru A, Maravilla K, Giedd J, Munson J, Dawson G, Dager S. 2002. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59(2):184-192.Google Scholar
  19. 19.
    Kemper TL, Bauman ML. 1993. The contribution of neuropathologic studies to the understanding of autism. J Neurol Clin 11(1):175-187.Google Scholar
  20. 20.
    Guerin P, Lyon G, Barthelemy C, Sostak E, Chevrollier V, Garreau B, Lelord G. 1996. Neuropathological study of a case of autistic syndrome with severe mental retardation. Neurology 38(3):203-211.Google Scholar
  21. 21.
    Egaas B, Courchesne E, Saitoh O. 1995. Reduced size of corpus callosum in autism. J Arch Neurol 52(8): 794-801.Google Scholar
  22. 22.
    Hardan AY, Minshew NJ, Keshavan MS. 2000. Corpus callosum size in autism. Neurology 55:1033-1036.Google Scholar
  23. 23.
    Piven J, Bailey J, Ranson BJ, Arndt S. 1997. An MRI study of the corpus callosum in autism. Am J Psychiatry 154(8):1051-1056.Google Scholar
  24. 24.
    Haas R, Townsend J, Courchesne E, Lincoln A, Schreibman L, Yeung-Courchesne R. 1996. Neurologic abnormalities in infantile autism. J Child Neurol 11(2):84-92.CrossRefGoogle Scholar
  25. 25.
    Saitoh O, Courchesne E, Egaas B, Lincoln A, Schreibman L. 1995. Crosssectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 45(2):317-324.Google Scholar
  26. 26.
    Manes F, Piven J, Vrancic D, Nanclares V, Plebst C, Starkstein S. 1999. An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J Neuropsychiatry Clin Neurosci 11(4):470-474.Google Scholar
  27. 27.
    Chung M, Dalton K, Alexander A, Davidson R. 2004. Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage 23:242-251.CrossRefGoogle Scholar
  28. 28.
    Waiter G, Williams J, Murray A, Gilchrist A, Perrett D, Whiten A. 2005. Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage 24(2):455-461.CrossRefGoogle Scholar
  29. 29.
    Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss A. 2004. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Am J Biol Psychiatry 55:323-326.CrossRefGoogle Scholar
  30. 30.
    Vidal C, Nicolson R, DeVito T, Hayashi K, Geaga J, Drost D, Williamson P, Rajakumar N, Sui Y, Dutton R, Toga A, Thompson P. 2006. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. J Biol Psychiatry 60(3):218-225.CrossRefGoogle Scholar
  31. 31.
    Cody H, Pelphrey K, Piven J. 2002. Structural and functional magnetic resonance imaging of autism. Int J Dev Neurosci, 20:421-438.CrossRefGoogle Scholar
  32. 32.
    Williams R, Hauser S, Purpura D, DeLong G, Swisher C. 1980. Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. J Arch Neurol, 37(12):749-753.Google Scholar
  33. 33.
    Ritvo E, Freeman B, Scheibel A, Duong T, Robinson H, Guthrie D, Ritvo A. 1986. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA- NSAC autopsy research report. Am J Psychiatry 143:862-866.Google Scholar
  34. 34.
    Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iversen P, Bauman M, Perry E. 2002. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125(7):1483-1495.CrossRefGoogle Scholar
  35. 35.
    Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P. 1998. A clinicopathological study of autism. Brain 121(5):889-905.CrossRefGoogle Scholar
  36. 36.
    Courchesne E, Yeung-Courchesne R, Press G, Hesselink J, Jernigan T. 1988. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318(21):1349-1354.CrossRefGoogle Scholar
  37. 37.
    Allen G, Courchesne E. 2003. Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Am J Psychiatry 160: 262-273.CrossRefGoogle Scholar
  38. 38.
    Mountcastle VB. 1997. The minicolumnar organization of the neocortex. Brain 120:701-722.CrossRefGoogle Scholar
  39. 39.
    Mountcastle VB. 2003. Introduction: computation in cortical columns. J Cereb Cortex 13(1):2-4.CrossRefGoogle Scholar
  40. 40.
    Casanova MF, Buxhoeveden D, Switala A, Roy E. 2002. Minicolumnar pathology in autism. Neurology 58:428-432.Google Scholar
  41. 41.
    Casanova MF, Buxhoeveden D, Switala A, Roy E. 2002. Neuronal density and architecture (gray level index) in the brains of autistic patients. J Child Neurol, 17:515-521.CrossRefGoogle Scholar
  42. 42.
    Casanova MF. 2004. White matter volume increases and minicolumns in autism. Ann Neurol 56(3):453.CrossRefGoogle Scholar
  43. 43.
    Casanova MF, Van Kooten I, Switala A, van Engeland H, Heinsen H, Steinbusch H, Hof PR, Trippe J, Stone J, Schmitz C. 2006. Minicolumnar abnormalities in autism. Acta Neuropathol. In press. Available online.Google Scholar
  44. 44.
    Herbert M, Ziegler D, Makris N, Filipek P, Kemper T, Normandin J, Sanders HA, Kennedy D, Caviness VJ. 2004. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55:530-540.CrossRefGoogle Scholar
  45. 45.
    Lainhart JE, Lazar M, Bigler E, Alexander A. 2005. The brain during life in autism: ad- vances in neuroimaging research. In Recent advances in autism research, pp. 57-108. Ed MF Casanova. New York: NOVA Biomedical.Google Scholar
  46. 46.
    Bauman ML, Kemper TL. 1990. Limbic and cerebellar abnormalities are also present in an autistic child of normal intelligence. Neurology 40:359.Google Scholar
  47. 47.
    Bauman ML, Kemper TL. 1994. Neuroanatomic observations of the brain in autism. In The neurobiology of autism, pp. 119-145. Ed ML Bauman, TL Kemper TL. Baltimore: Johns Hopkins UP.Google Scholar
  48. 48.
    Schumann CM, Buonocore HM, Amaral DG. 2001. Magnetic resonance imaging of the post- mortem autistic brain. J Autism Dev Disord 31(6):561-568.CrossRefGoogle Scholar
  49. 49.
    Osher S, Sethian J. 1988. Fronts propagating with curvature speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12-49.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Chan T, Sandberg B, Vese L. 2000. Active contours without edges for vector valued images. J Vis Commun Image Represent, 2:130-141.CrossRefGoogle Scholar
  51. 51.
    Zaho H-K, Chan T, Merriman B, Osher S. 1996. A variational level set approach to multiphase motion. J Comp Phys 127:179-195.CrossRefGoogle Scholar
  52. 52.
    Zeng X, Staib LH, Duncan JS. 1998. Volumetric layer segmentation using coupled surface propagation. In Proceedings of the IEEE conference on computer vision and pattern recog- nition (CVPR), pp. 179-195. Washington, DC: IEEE Computer Society.Google Scholar
  53. 53.
    Farag AA, El-Baz A, Gimelfarb G. 2004. Precise image segmentation by iterative em-based approximation of empirical gray level distribution with linear combination of gaussians. In IEEE international workshop on learning in computer vision and pattern recognition, pp. 121-129. Washington, DC: IEEE Computer Society.Google Scholar
  54. 54.
    Farag AA, Hassan H. 2004. Adaptive segmentation of multi-modal 3d data using robust level set techniques. In Proceedings of the 7th international conference on medical image computing and computer-assisted intervention (MICCAI’2004). Lecture notes in computer science, Vol. 2306, pp. 169-176. New York: Springer.Google Scholar
  55. 55.
    Goldenberg R, Kimmel R, Rivlin E, Rudzsky M. 2002. Cortex segmentation: a fast variational geometric approach. IEEE Trans Med Imaging 21(2):1544-1551.CrossRefGoogle Scholar
  56. 56.
    Geusebroek M, Burghouts G, Smeulders A. 2005. The Amsterdam library of object images. Int J Comput Vis 61(1):103-112.CrossRefGoogle Scholar
  57. 57.
    Cerveny V. 1995. Ray synthetic seismograms for complex two- and three-dimensional structures. Am J Geophys 58:2-26.Google Scholar
  58. 58.
    Vidale JE. 1990. Finite-difference calculation of traveltimes in three dimensions. Geophysics 55:521-526.CrossRefGoogle Scholar
  59. 59.
    Van Trier J, Symes WW. 1991. Upwind finite-difference calculation of traveltimes. Geophysics 56:812-821.CrossRefGoogle Scholar
  60. 60.
    Podvin P, and Lecomte I. 1991. Finite-difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys J Int 105:271-284.CrossRefGoogle Scholar
  61. 61.
    Adalsteinsson D, and Sethian J. 1995. A fast level set method for propagating interfaces. J Comput Phys 118:269-277.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Kim S. 1999. ENO-DNO-PS: a stable, second-order accuracy eikonal solver. J Soc Explor Geophys 28:1747-1750.Google Scholar
  63. 63.
    Sethian J. 1999. Level sets methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd ed. Cambridge: Cambridge UP.Google Scholar
  64. 64.
    Kimmel R, and Sethian JA. 1998. Fast marching methods on triangulated domains. Proc Natl Acad Sci USA 95(11):8341-8435.MathSciNetGoogle Scholar
  65. 65.
    Sethian JA, Vladimirsky A. 2000. Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc Natl Acad Sci USA 97(11):5699-5703.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Hassouna MS, Farag AA. 2006. Accurate tracking of monotonically advancing fronts. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 355-362, Washington, DC: IEEE Computer Society.Google Scholar
  67. 67.
    Shen D, Davatzikos C. 2002. Hammer: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21(11):257-270.Google Scholar
  68. 68.
    Zitova B, Flusser J. 2003. Image registration methods: a survey. Image Vision Comput 21(21):977-1000.CrossRefGoogle Scholar
  69. 69.
    Fahmi R., Farag A. A., El-Baz A. 2006. New deformable registration technique using scale space and curve evolution theory and a finite element based validation framework. In Proceed- ings of the 28th IEEE EMBS annual international conference, pp. 3041-3044. Washington, DC: IEEE Computer Society.Google Scholar
  70. 70.
    Lindeberg T. 1994. Scale-space theory in computer vision. New York: Kluwer Academic.Google Scholar
  71. 71.
    Mikolajczyk K, Schmid C. 2002. An affine invariant interest point detector. In Proceedings of the European conference on computer vision (ECCV’02). Lecture notes in computer science, Vol. 2350, pp. 128-142. Ed A Heyden. New York: Springer.Google Scholar
  72. 72.
    Abdel-Hakim A., Farag A. A. 2005. "CSIFT: a SIFT Descriptor with Color Invariant Char- acteristics", Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR-06), pp. 1978-1983, June 2006, Los Alamitos, CA, USA.Google Scholar
  73. 73.
    Mikolajczyk K, and Schmid C. 2005. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Machine Intell 27(10):1615-1630.CrossRefGoogle Scholar
  74. 74.
    Lowe D. 2004. Distinctive image features from scale-invariant key points. Int J Comput Vision 60(2):91-110.CrossRefGoogle Scholar
  75. 75.
    Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D. 1999. Nonrigid registration using free-form deformations: application to breast mr images. IEEE Trans Med Imaging 18(8):712-721.CrossRefGoogle Scholar
  76. 76.
    Keller T, Kana R, Just M. 2006. A developmental study of the structural integrity of white matter in autism. NeuroReport. In press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Aly A. Farag
    • 1
  • Rachid Fahmi
    • 2
  • Manuel F. Casanova
    • 3
  • Alaa E. Abdel-Hakim
    • 2
  • Hossam Abd El-Munim
    • 2
  • Ayman El-Baz
    • 4
  1. 1.Computer Vision and Image Processing LaboratoryUniversity of LouisvilleLouisvilleUSA
  2. 2.Computer Vision and Image Processing Laboratory, Department of Electrical and Computer EngineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA
  4. 4.Bioengineering DepartmentUniversity of LouisvilleLouisvilleUSA

Personalised recommendations