Skip to main content

Efficient Kernel Density Estimation Of Shape And Intensity Priors For Level Set Segmentation

  • Chapter
Deformable Models

We propose a nonlinear statistical shape model for level set segmentation that can be efficiently implemented. Given a set of training shapes, we perform a kernel density estimation in the low-dimensional subspace spanned by the training shapes. In this way, we are able to combine an accurate model of the statistical shape distribution with efficient optimization in a finite-dimensional subspace. In a Bayesian inference framework, we integrate the nonlinear shape model with a nonparametric intensity model and a set of pose parameters that are estimated in a more direct data-driven manner than in previously proposed level set methods. Quantitative results show superior performance (regarding runtime and segmentation accuracy) of the proposed nonparametric shape prior over existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. Dervieux A, Thomasset F. 1979. A finite element method for the simulation of Rayleigh- Taylor instability. In Approximation methods for Navier-Stokes problems, pp. 145-158. Ed R Rautmann. Berlin: Springer.

    Google Scholar 

  2. Osher SJ, Sethian JA. 1988. Front propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12-49.

    Article  MATH  MathSciNet  Google Scholar 

  3. Caselles V, Catt é F, Coll T, Dibos F. 1993. A geometric model for active contours in image processing. Num Math 66:1-31.

    Article  MATH  Google Scholar 

  4. Malladi R, Sethian JA, Vemuri BC. 1994. A topology independent shape modeling scheme. In Proceedings of the SPIE conference on geometric methods in computer vision, Vol. 2031, pp. 246-258. Bellingham, WA: SPIE.

    Google Scholar 

  5. Kichenassamy S, Kumar A, Olver PJ, Tannenbaum A, Yezzi AJ. 1995. Gradient flows and geometric active contour models. In Proceedings of the fifth international conference computer vision (ICCV’95), pp. 810-815. Washington, DC: IEEE Computer Society.

    Chapter  Google Scholar 

  6. Leventon M, Grimson W, Faugeras O. 2000. Statistical shape influence in geodesic active contours. In Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Vol. 1, pp. 316-323. Washington, DC: IEEE Computer Society.

    Google Scholar 

  7. Tsai A, Yezzi AJ, Willsky AS. 2003. A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging, 22(2):137-154.

    Article  Google Scholar 

  8. Cremers D, Osher SJ, Soatto S. 2006. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vision. 69(3):335-351.

    Article  Google Scholar 

  9. Rousson M, Paragios N, Deriche R. 2004. Implicit active shape models for 3d segmentation in MRI imaging. In Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI 2000). Lecture notes in computer science, Vol. 2217, pp. 209-216. New York: Springer.

    Google Scholar 

  10. Dam EB, Fletcher PT, Pizer S, Tracton G, Rosenman J. 2004. Prostate shape modeling based on principal geodesic analysis bootstrapping. In Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI 2003). Lecture notes in computer science, Vol. 2217, pp. 1008-1016. New York: Springer.

    Google Scholar 

  11. Freedman D, Radke RJ, Zhang T, Jeong Y, Lovelock DM, Chen GT. 2005. Model-based seg- mentation of medical imagery by matching distributions. IEEE Trans Med Imaging 24(3):281-292.

    Article  Google Scholar 

  12. Rosenblatt F. 1956. Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832-837.

    Article  MATH  MathSciNet  Google Scholar 

  13. Silverman BW. 1992. Density estimation for statistics and data analysis. London: Chapman and Hall.

    Google Scholar 

  14. Paragios N, Deriche R. 2002. Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vision 46(3):223-247.

    Article  MATH  Google Scholar 

  15. Chan LA Vese TF. 2001. Active contours without edges. IEEE Trans Med Imaging, 10(2):266-277.

    Google Scholar 

  16. Rousson, M., Cremers, D., 2005. Efficient Kernel Density Estimation of Shape and Intensity Priors for Level Set Segmentation, International conference on medical image computing and computed-assisted intervention (MICCAI 2005), 2: 757-764.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cremers, D., Rousson, M. (2007). Efficient Kernel Density Estimation Of Shape And Intensity Priors For Level Set Segmentation. In: Deformable Models. Topics in Biomedical Engineering. International Book Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68343-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68343-0_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-31204-0

  • Online ISBN: 978-0-387-68343-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics