Deformable Model-Based Segmentation Of The Prostate From Ultrasound Images

  • Aaron Fenster
  • Mingyue Ding
  • Hanif Ladak
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

Prostate cancer is the most commonly diagnosed malignancy in men, and is the second leading cause of death due to cancer in men [1, 2]. It has been found at autopsy that 30% of men at age 50, 40% at age 60, and almost 90% at age 90 have prostate cancer [3, 4]. Over the past decade, the prostate-specific antigen (PSA) blood test has become well established for early detection of prostate cancer, particularly for monitoring of prostate cancer after treatment [5–10].


Control Point Segmentation Method Segmentation Algorithm Manual Segmentation Mean Absolute Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Silverberg E, Boring CC, Squires TS. 1990. Cancer statistics, 1990 [see comments]. CA Cancer J Clin 40:9-26.CrossRefGoogle Scholar
  2. 2.
    Abbas F, Scardino PT. 1997. The natural history of clinical prostate carcinoma [editorial; comment]. Cancer 80:827-833.CrossRefGoogle Scholar
  3. 3.
    McNeal JE, Bostwick DG, Kindrachuk RA, Redwine EA, Freiha FS, Stamey TA. 1986. Patterns of progression in prostate cancer. Lancet 1:60-63.CrossRefGoogle Scholar
  4. 4.
    Garfinkel L, Mushinski M. 1994. Cancer incidence, mortality and survival: trends in four leading sites. Stat Bull Metrop Insur Co 75:19-27.Google Scholar
  5. 5.
    Terris MK, McNeal JE, Stamey TA. 1992. Estimation of prostate cancer volume by transrectal ultrasound imaging. J Urol 147:855-857.Google Scholar
  6. 6.
    Guinan P, Bhatti R, Ray P. 1987. An evaluation of prostate specific antigen in prostatic cancer. J Urol 137:686-689.Google Scholar
  7. 7.
    Drago JR, Badalament RA, Wientjes MG, Smith JJ, Nesbitt JA, York JP, Ashton JJ, Neff JC. 1989. Relative value of prostate-specific antigen and prostatic acid phosphatase in diagnosis and management of adenocarcinoma of prostate: Ohio State University experience. Urology 34:187-192.CrossRefGoogle Scholar
  8. 8.
    Benson MC. 1994. Prostate specific antigen [editorial comment]. J Urol 152:2046-2048.Google Scholar
  9. 9.
    Waterhouse RL, Resnick MI. 1989. The use of transrectal prostatic ultrasonography in the evaluation of patients with prostatic carcinoma. J Urol 141:233-239.Google Scholar
  10. 10.
    Kirby RS. 1997. Pre-treatment staging of prostate cancer: recent advances and future prospects. Prostate Cancer Prostatic Dis 1:2-10.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Rifkin MD. 1997. Ultrasound of the prostate: imaging in the diagnosis and therapy of prostatic disease, 2d ed. Philadelphia: Lippincott-Raven.Google Scholar
  12. 12.
    Mettlin C, Jones GW, Murphy GP. 1993. Trends in prostate cancer care in the United States, 1974-1990: observations from the patient care evaluation studies of the American College of Surgeons Commission on Cancer. CA Cancer J Clin 43:83-91.CrossRefGoogle Scholar
  13. 13.
    Middleton RG, Thompson IM, Austenfeld MS, Cooner WH, Correa RJ, Gibbons RP, Miller HC, Oesterling JE, Resnick MI, Smalley SR. 1995. Prostate cancer clinical guidelines panel summary report on the management of clinically localized prostate cancer: The American Urological Association. J Urol 154:2144-2148.CrossRefGoogle Scholar
  14. 14.
    Shinohara K, Scardino PT, Carter SS, Wheeler TM. 1989. Pathologic basis of the sonographic appearance of the normal and malignant prostate. Urol Clin North Am 16:675-691.Google Scholar
  15. 15.
    Lee F, Torp-Pedersen ST, McLeary RD. 1989. Diagnosis of prostate cancer by transrectal ultrasound. Urol Clin North Am 16:663-673.Google Scholar
  16. 16.
    Pouliot J, Taschereau R, Cote C. 1999. Dosimetric aspects of permanents radioactive implants for the treatment of prostate cancer. Phys Can 55:61-68.Google Scholar
  17. 17.
    Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. 1995. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43, American Association of Physicists in Medicine [published erratum appears in Med Phys 1996 23(9):1579]. Med Phys 22:209-234.CrossRefGoogle Scholar
  18. 18.
    Edmundson GK, Yan D, Martinez AA. 1995. Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy. Int J Radiat Oncol Biol Phys 33:1257-1263.Google Scholar
  19. 19.
    Downey DB, Fenster A. 1995. Three-dimensional power Doppler detection of prostate cancer [letter]. AJR 165:741.Google Scholar
  20. 20.
    Onik GM, Downey DB, Fenster A. 1996. Three-dimensional sonographically monitored cryosurgery in a prostate phantom. J Ultrasound Med 15:267-270.Google Scholar
  21. 21.
    Chin JL, Downey DB, Onik G, Fenster A. 1996. Three-dimensional prostate ultrasound and its application to cryosurgery. Tech Urol 2:187-193.Google Scholar
  22. 22.
    Chin JL, Downey DB, Mulligan M, Fenster A. 1998. Three-dimensional transrectal ultrasound guided cryoablation for localized prostate cancer in nonsurgical candidates: a feasibility study and report of early results. J Urol 159:910-914.CrossRefGoogle Scholar
  23. 23.
    Downey DB, Fenster A. 1998. Three-dimensional ultrasound: a maturing technology. Ultra-sound Q 14:25-40.Google Scholar
  24. 24.
    Tong S, Downey DB, Cardinal HN, Fenster A. 1996. A three-dimensional ultrasound prostate imaging system. Ultrasound Med Biol 22:735-746.CrossRefGoogle Scholar
  25. 25.
    Liu YJ, Ng WS, Teo MY, Lim HC. 1997. Computerised prostate boundary estimation of ultrasound images using radial bas-relief method. Med Biol Eng Comput 35:445-454.CrossRefGoogle Scholar
  26. 26.
    Richard WD, Keen CG. 1996. Automated texture-based segmentation of ultrasound images of the prostate. Comput Med Imaging Graphics 20:131-140.CrossRefGoogle Scholar
  27. 27.
    Shen D, Zhan Y, Davatzikos C. 2003. Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging 22:539-551.CrossRefGoogle Scholar
  28. 28.
    Kwoh CK, Teo MY, Ng WS, Tan SN, Jones LM. 1998. Outlining the prostate boundary using the harmonics method. Med Biol Eng Comput 36:768-771.CrossRefGoogle Scholar
  29. 29.
    Ghanei A, Soltanian-Zadeh H, Ratkewicz A, Yin FF. 2001. A three-dimensional deformable model for segmentation of human prostate from ultrasound images. Med Phys 28:2147-2153.CrossRefGoogle Scholar
  30. 30.
    Chiu B, Freeman GH, Salama MM, Fenster A. 2004. Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour. Phys Med Biol 49:4943-4960.CrossRefGoogle Scholar
  31. 31.
    Ladak HM, Mao F, Wang Y, Downey DB, Steinman DA, Fenster A. 2000. Prostate boundary segmentation from 2D ultrasound images. Med Phys 27:1777-1788.CrossRefGoogle Scholar
  32. 32.
    Lobregt S, Viergever MA. 1995. A discrete dynamic contour model. IEEE Trans Med Imaging 14:12-24.CrossRefGoogle Scholar
  33. 33.
    McInerney T, Terzopoulos D. 1995. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comput Med Imaging Graphics 19:69-83.CrossRefGoogle Scholar
  34. 34.
    Fenster A, Downey DB. 1996. 3-dimensional ultrasound imaging: a review. IEEE Eng Med Biol 15:41-51.CrossRefGoogle Scholar
  35. 35.
    Fenster A, Downey DB, Cardinal HN. 2001. Topical review: three-dimensional ultrasound imaging. Phys Med Biol 46:R67-99.CrossRefGoogle Scholar
  36. 36.
    Tong S, Cardinal HN, Downey DB, Fenster A. 1998. Analysis of linear, area and volume distortion in 3D ultrasound imaging. Ultrasound Med Biol 24:355-373.CrossRefGoogle Scholar
  37. 37.
    Tong S, Cardinal HN, McLoughlin RF, Downey DB, Fenster A. 1998. Intra- and inter-observer variability and reliability of prostate volume measurement via two-dimensional and three- dimensional ultrasound imaging. Ultrasound Med Biol 24:673-81.CrossRefGoogle Scholar
  38. 38.
    Ladak HM, Wang Y, Downey DB, Fenster A. 2003. Testing and optimization of a semiautomatic prostate boundary segmentation algorithm using virtual operators. Med Phys 30:1637-1647.CrossRefGoogle Scholar
  39. 39.
    Chalana V, Kim Y. 1997. A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging 16:642-652.CrossRefGoogle Scholar
  40. 40.
    Oliveira LF, Simpson DM, Nadal J. 1996. Calculation of area of stabilometric signals using principal component analysis. Physiol Meas 17:305-312.CrossRefGoogle Scholar
  41. 41.
    Wang Y, Cardinal HN, Downey DB, Fenster A. 2003. Semiautomatic three-dimensional seg- mentation of the prostate using two-dimensional ultrasound images. Med Phys 30:887-897.CrossRefGoogle Scholar
  42. 42.
    Ding M, Chen C, Wang Y, Gyacskov I, Fenster A. 2003. Prostate segmentation in 3D US images using the Cardinal-spline based discrete dynamic contour. Proc SPIE 5029:69-76.CrossRefGoogle Scholar
  43. 43.
    Hu N, Downey D, Fenster A, Ladak H. 2003. Prostate boundary segmentation from 3D ultrasound images. Med Phys 30:1648-1659.CrossRefGoogle Scholar
  44. 44.
    Ding M, Gyacskov I, Yuan X, Drangova M, Fenster A. 2004. Slice-based prostate segmentation in 3D US images based on continuity contraint. Proc SPIE 5367:151-160.CrossRefGoogle Scholar
  45. 45.
    Hu N, Downey DB, Fenster A, Ladak HM. 2003. Prostate boundary segmentation from 3D ultrasound images. Med Phys 30:1648-1659.CrossRefGoogle Scholar
  46. 46.
    Gill JD, Ladak HM, Steinman DA, Fenster A. 2000. Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med Phys 27:1333-1342.CrossRefGoogle Scholar
  47. 47.
    Chen Y, Medioni G. 1995. Description of complex objects from multiple range images using an inflating balloon model. Comput Vision Image Understand 61:325-334.CrossRefGoogle Scholar
  48. 48.
    Geiger B. 1993. Three-dimensional modeling of human organs and its application to diag- nosis and surgical planning. Technical report No. 2105. Institut National de Rechereche en informatique et automatique, Sophia-Antipolis, France.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Aaron Fenster
    • 1
  • Mingyue Ding
    • 2
  • Hanif Ladak
    • 3
  1. 1.Robarts Research InstituteLondonCanada
  2. 2.Institute for Pattern Recognition and Artificial IntelligenceHuazhong University of Science and TechnologyChina
  3. 3.Department of Medical BiophysicsThe University of Western OntarioLondonCanada

Personalised recommendations