T-Surfaces Framework For Offset Generation And Semiautomatic 3d Segmentation

  • Jasjit S. Suri
  • Rodrigo L. S. Silva
  • Paulo S. S. Rodrigues
  • Gilson A. Giraldi
  • Antonio A. F. Oliveira
  • Edilberto Strauss
  • Walter Jiménez
Part of the Topics in Biomedical Engineering. International Book Series book series (ITBE)

This chapter describes a new approach that integrates the T-Surfaces model and isosurface generation methods in a general framework for segmentation and surface reconstruction in 3D medical images. Besides, the T-Surfaces model is applied for offset generation in the context of geometry extraction.


Grid Node Anisotropic Diffusion Deformable Model Active Contour Model Gradient Vector Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. 1.
    Kass M, Witkin A, Terzopoulos D. 1988. Snakes: active contour models. Int J Comput Vision 1(4):321-331.CrossRefGoogle Scholar
  2. 2.
    McInerney T, Terzopoulos D. 1996. Deformable models in medical image analysis: a survey. Med Image Anal 1(2): 91-108.CrossRefGoogle Scholar
  3. 3.
    Cohen LD, Cohen I. 1993. Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Trans Pattern Anal Machine Intell 15(11): 1131-1147.CrossRefGoogle Scholar
  4. 4.
    ter Haar Romery BM, Niessen WJ, Viergever MA. 1998. Geodesic deformable models for medical image analysis. IEEE Trans Med Imaging 17(4):634-641.CrossRefGoogle Scholar
  5. 5.
    Sapiro G. 1997. Color snakes. Comput Vision Image Understand 68(2):247-253.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Black A, Yuille A, eds. 1993. Active vision. Cambridge: MIT Press.Google Scholar
  7. 7.
    Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22(1):61-79.MATHCrossRefGoogle Scholar
  8. 8.
    Malladi R, Sethian JA, Vemuri BC. 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17(2):158-175.CrossRefGoogle Scholar
  9. 9.
    McInerney TJ. 1997. Topologically adaptable deformable models for medical image analysis. PhD dissertation. University of Toronto.Google Scholar
  10. 10.
    McInerney T, Terzopoulos D. 1999. Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840-850.CrossRefGoogle Scholar
  11. 11.
    McInerney T, Terzopoulos D. 1995. Topologically adaptable snakes. In Proceedings of the fifth international conference on computer vision (ICCV’95), Cambridge, MA, USA, pp. 840-845.CrossRefGoogle Scholar
  12. 12.
    Sutton P, Hansen C. 2000. Accelerated isosurface extraction in time-varying fields. IEEE Trans Visualiz Comput Graphics 6(2):98-107.CrossRefGoogle Scholar
  13. 13.
    Allgower EL, Georg K. 1990. Numerical continuation methods: an introduction. Berlin:Springer-Verlag.MATHGoogle Scholar
  14. 14.
    Lorensen WE, Cline HE. 1987. Marching cubes: a high-resolution 3D surface construction algorithm. Comput Graphics 21(4):163-169.CrossRefGoogle Scholar
  15. 15.
    Strauss E, Jimenez W, Giraldi G, Silva R, Oliveira A. 2002. A surface extraction approach based on multi-resolution methods and T-surfaces framework. Technical report, National Laboratory for Scientific Computing, Scholar
  16. 16.
    Giraldi G, Strauss E, Apolinario A, Oliveira AF. 2001. An initialization method for deformable models. In Fifth world multiconference on systemics, cybernetics and informatics (SCI).Google Scholar
  17. 17.
    Strauss E, Jimenez W, Giraldi GA, Silva R, Oliveira AF. 2002. A semiautomatic surface reconstruction framework based on T-surfaces and isosurface extraction methods. In Proceedings of the international symposium on computer graphics, image processing and vision (SIBGRAPI’2001), Florian ópolis, Brazil, October 15-18.Google Scholar
  18. 18.
    Giraldi GA, Strauss E, Oliveira AF. 2003. Dual-T-snakes model for medical imaging segmentation. Pattern Recognit Lett 24(7):993-1003.CrossRefGoogle Scholar
  19. 19.
    Xu C, Pham D, Rettmann M, Yu D, Prince J. 1999. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467-480.CrossRefGoogle Scholar
  20. 20.
    Giraldi GA, Strauss E, Oliveira AF. 2000. An initialization method for active contour models. In Proceedings of the 2000 international conference on imaging science, systems, and technology (CISST’2000).Google Scholar
  21. 21.
    Pohle R, Behlau T, Toennies KD. 2003. Segmentation of 3D medical image data sets with a combination of region based initial segmentation and active surfaces. In Progress in biomedical optics and imaging. Proc SPIE Med Imaging 5203:1225-1231.Google Scholar
  22. 22.
    Cohen LD. 1991. On active contour models and balloons. Comput Vision Graphics Image Process:Image Understand 53(2):211-218.MATHGoogle Scholar
  23. 23.
    Falc ão AX, da Cunha BS, Lotufo RA. 2001. Design of connected operators using the image foresting transform. Proc SPIE Med Imaging 4322:468-479.Google Scholar
  24. 24.
    Jolion JM, Montanvert A. 1992. The adaptive pyramid: a framework for 2D image analysis. Comput Vision Graphics Image Process: Image Understand 55(3):339-348.MATHGoogle Scholar
  25. 25.
    Xu C, Prince J. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Giraldi GA, Oliveira AF. 1999. Convexity analysis of snake models based on hamiltonian formulation. Technical report, Universidade Federal do Rio de Janeiro, Departamento Engenharia de Sistemas e Computaç ão,
  27. 27.
    Chiang Y-J, Silva C, Schroeder W. 1998. Interactive out-of-core isosurface extraction. In IEEE Visualization ’98, pp. 167-174.Google Scholar
  28. 28.
    Carneiro BP, Silva CT, Kaufman AE. 1996. Tetra-cubes: An algorithm to generate 3D isosurfaces based upon tetrahedra. In Proceedings of the international symposium on computer graphics, image processing and vision (SIBGRAPI’96).Google Scholar
  29. 29.
    Berger MJ, Oliger J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 54:484-512.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Sethian JA. 1996. Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and materials sciences. Cambridge: Cambridge UP.Google Scholar
  31. 31.
    Cohen J, Varshney A, Manocha D, Turk G, Weber H, Agarwal P, Brooks F, Wright W. 1996. Simplification envelopes. Comput graphics 30:119-128.Google Scholar
  32. 32.
    Perona P, Malik J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12(7):629-639.CrossRefGoogle Scholar
  33. 33.
    Sarti A, Ortiz C, Lockett S, Malladi R. 1998. A unified geometric model for 3D confocal image analysis in cytology. In Proceedings of the international symposium on computer graphics, image processing and vision (SIBGRAPI’98), pp. 69-76.Google Scholar
  34. 34.
    Giraldi GA, Strauss E, Oliveira AF. 2001. Dual and topologically adaptable snakes and initializa- tion of deformable models. In Proceedings of the International conference on imaging science, systems, and technology (CISST’2001).Google Scholar
  35. 35.
    Taubin G. 2001. Linear anisotropic mesh filtering. Technical report RC-22213, IBM T.J. Watson Research Center.Google Scholar
  36. 36.
    Sethian JA. 1994. Curvature flow and entropy conditions applied to grid generation. J Comput Phys 115:440-454.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Xu C, Prince JL. 2000. Global optimality of gradient vector flow. In Proceedings of the conference on information sciences and systems, Princeton University.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jasjit S. Suri
    • 1
  • Rodrigo L. S. Silva
    • 2
  • Paulo S. S. Rodrigues
    • 2
  • Gilson A. Giraldi
    • 2
  • Antonio A. F. Oliveira
    • 3
  • Edilberto Strauss
    • 3
  • Walter Jiménez
    • 2
  1. 1.Eigen LLCGrass ValleyUSA
  2. 2.National Laboratory for Scientific ComputingBrazil
  3. 3.Federal UniversityBrazil

Personalised recommendations