Advertisement

Polarization in GaN Based Heterostructures and Heterojunction Field Effect Transistors (HFETs)

  • Hadis Morkoc
  • Jacob Leach

The need for computers to handle large volumes of data for high speed computing, real time signal processing, telecommunication, imaging, low noise and high frequency amplification, and high power compact amplifiers has generated an unequalled interest in advancing the speed of electronic devices and circuits. RF, microwave, and millimeter wave systems for telecommunication and many other traditional uses require devices with ever increasing performance in terms of noise figure and gain at frequencies exceeding 100 GHz, and also most pertinently to the subject matter of this chapter – increased power. All of these driving forces have resulted in intense activity of new device concepts as well as heterostructures based on new semiconductors.

Keywords

Breakdown Voltage Spontaneous Polarization Drain Current Polarization Charge Gate Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Morkoç, H. Ünl ü, and G. Ji, “Fundamentals and Technology of MODFETs”, Vols. I and II (Wiley and Sons, Wiley, Chichesters, West Sussex, UK (1991)Google Scholar
  2. 2.
    T.J. Drummond, W.T. Masselink and H. Morkoç, “Modulation Doped GaAs(Al,Ga)As Heterojunction Field Effect Transistors: MODFETs,” Proc. of IEEE, Vol. 74(6), pp. 773-822, June 1986.Google Scholar
  3. 3.
    B. K. Ridley, “Exact electron momentum-relaxation times in GaN associated with scattering by polar-optical phonons”, Journal of Applied Physics, vol. 84, no.7, 1, pp. 4020-4021 Oct. (1998)Google Scholar
  4. 4.
    U. V. Bhapkar, M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtize GaN”, J. Appl. Phys 82, 1649 (1997)Google Scholar
  5. 5.
    J. Kolnik, I.H. Oguzman, K.F. Brennan, R. Wang, P.P. Ruden, and Y. Wang, J. Appl. Phys. 78, pp. 1033-1038 (1995)Google Scholar
  6. 6.
    . H. Morkoç, “Beyond SiC! III-V Nitride Based Heterostructures and Devices,” in “SiC Materials and Devices,” Y. S. Park, ed., Academic Press, Willardson and Beer Series, eds. Willardson and Weber, Vol. 52, Chapter 4, pp. 307-394, 1998.Google Scholar
  7. 7.
    S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias and T. J. Jenkins, “High Power Microwave GaN/AlGaN HEMTs on Semi-insulating Silicon Carbide Substrates,” IEEE Electron. Dev. Lett., 20(4), 161-163, (1999)Google Scholar
  8. 8.
    Y.-F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. DenBaars, U. K. Mishra, “High Al-Content AlGaN/GaN MODFET’s for Ultrahigh Performance,” IEEE Electron. Dev. Lett. 19(2), 50-53, 1998.Google Scholar
  9. 9.
    A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “DC and Microwave Performance of High-Current AlGaN/GaN Heterostructure Field Effect Transistors Grown on p-Type SiC Substrates,” IEEE Electron. Device Lett. 19(2), 54-56, 1998.Google Scholar
  10. 10.
    G. J. Sullivan, M. Y. Chen, J. A. Higgins, J. W. Yang, Q. Chen, R. L. Pierson, and B. T. McDermott, “High-power 10-GHz Operation of AlGaN HFET’s on Insulating SiC,” IEEE Electron. Dev. Lett. 19, 198-199, 1998.Google Scholar
  11. 11.
    S. Binari, J.M. Redwing, G. Kelner, and W. Kruppa, “AlGaN/GaN HEMTs Grown on SiC Substrates,” Electron. Lett. 33(3), 242-243, 1997.Google Scholar
  12. 12.
    J.S. Moon, M. Micovic, P. Janke, P. Hashimoto, W-S. Wong, R.D. Widman, L. McCray, A. Kurdoghlian, and C. Nguyen, “GaN/AlGaN HEMTs operating at 20 GHz with continuous-wave power density >6 W/mm”, Electronics Letters, vol. 37, no. 8, pp. 528-530,2 April 2001.Google Scholar
  13. 13.
    M. Micovic, A. Kurdoghlian, P. Janke, P. Hashimoto, D. W. S. Wong, J. S. Moon, L. McCray, and C. Nguyen, IEEE Trans. on ED, Vol. 48, No. 3, pp. 591-592, 2001.Google Scholar
  14. 14.
    J.S. Moon, M. Micovic, A. Kurdoghlian, R. Janke, P. Hashimoto, W-S. Wong, L. McCray, “Linearity of low microwave noise AlGaN/GaN HEMTs”, Electronics Letters, vol. 38, no. 22, pp. 1358-1359, 24 Oct. 2002.Google Scholar
  15. 15.
    J.S. Moon, M. Micovic, A. Kurdoghlian, R. Janke, P. Hashimoto, W-S. Wong, L. McCray, “Linearity of low microwave noise AlGaN/GaN HEMTs”, Electronics Letters, vol. 38, no. 22, pp. 1358-1359, 24 Oct. 2002.Google Scholar
  16. 16.
    . N. Nguyen and C. Nguyen, private communication.Google Scholar
  17. 17.
    Y.-F. Wu, D. Kapolnek, J. Ibbetson, P. Parikh, B. Keller and U. K. Mishra, “Very high power density A1GaN/GaN HEMTs,” IEEE Trans. on Electron Dev., Vol. 48, No. 3, pp. 586-590, March 2001.Google Scholar
  18. 18.
    V. Tilak, B. Green, V. Kapper, H. Kim, T. Prunty, J. Smart, J. Shealy, L. Eastman, IEEE Electron Device Lett., Vol. 22., pp. 504-506, Nov. 2001.Google Scholar
  19. 19.
    M. D. Hampson, S.-C. Shen, R. S. Schwindt, R. K. Price, U. Chowdhury, M. M. Wong, Ting G. Zhu, D. Yoo, R. D. Dupuis, and M. Feng, “Polyimide Passivated AlGaN-GaN HFETs With 7.65 W/mm at 18 GHz”, IEEE Electron Device Letters, Vol. 25, No. 5, pp. 238-240, May 2004.Google Scholar
  20. 20.
    K. Chatty, S. Banerjee, T.P. Chow and R.J. Gutmann, Electron Device Letters, vol. 21, pp. 356-358, 2000.Google Scholar
  21. 21.
    Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Ionue, and M. Kusuhara, “10-W/mm AlGaN-GaN HFET with field modulation plate”, IEEE Electron Device Lett., Vol. 25, No. 5. pp. vol. 24, no. 5, pp. 289-291, May 2003.Google Scholar
  22. 22.
    N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMTs with overlapping gate structure,” IEEE Electron Device Lett., Vol. 21, pp. 421-423, Sept. 2000.Google Scholar
  23. 23.
    Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Rarikh., “30-W/mm AlGaN/GaN HEMTs By Field Plate Optimization”, IEEE Electron Device Letters, vol. 25, no. 3, pp. 117-119, March 2004.Google Scholar
  24. 24.
    W. Lu, J. Yang, M.A. Khan and I. Adesida, “A1GaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise,” IEEE Trans. on Electron Dev., Vol. 48, No. 3, pp. 581-585, March 2001.Google Scholar
  25. 25.
    Wu Lu, Jinwei Yang, M. Asif Khan, and Ilesanmi Adesida “AlGaN/GaN HEMTs on SiC with over 100 GHz fTand Low Microwave Noise”, IEEE TED, VOL. 48, NO. 3, pp. 581-585, March 2001.Google Scholar
  26. 26.
    T. Henderson, M. I. Aksun, C.K. Peng, H. Morkoç, P.C. Chao, P.M. Smith, K.H.G. Duh and L.F. Lester, “Microwave Performance of a Quarter Micron Gate Low Noise Pseudomorphic InGaAs/AlGaAs Modulation Doped Field Effect Transistor,” IEEE Electron. Dev. Lett., Vol. EDL-7, pp. 649-651, 1986.Google Scholar
  27. 27.
    Ozg ür Aktas, W. Kim, Z. Fan, S.N. Mohammad, A. Botchkarev, A. Salvador, B. Sverdlov, and H. Morkoç, Electron. Letts. Vol. 31, No. 16, pp. 1389-1390, (1995)Google Scholar
  28. 28.
    S. N. Mohammad, A. Salvador, and H. Morkoç, “Emerging GaN Based Devices,” Proc. IEEE 83, 1306-1355, 1995.Google Scholar
  29. 29.
    S. C. Binari, J. M. Redwing, G. Kelner, and W. Kruppa, Electron. Lett. 33, 242 (1997)Google Scholar
  30. 30.
    Hadis Morkoç, Aldo Di Carlo and R. Cingolani, Solid State Electronics, Volume 46, Issue 2 pp. 157-202, (2002)Google Scholar
  31. 31.
    . Hadis Morkoç, Aldo Di Carlo, and R. Cingolani, “GaN-Based Modulation Doped FETs” Low dimensional nitride semiconductors, edited by B. Gil, Oxford university Press, Oxford UK., pp. 341-414, 2002, ISBN 0 19 850974 XGoogle Scholar
  32. 32.
    Hadis Morkoç, Roberto Cingolani, and Bernard Gil, “Polarization Effects in Nitride Semiconductor Device Structures, and Performance of Modulation Doped Field Effect Transistors” Solid State Electronics, vol. 43, no. 10, pp. 1909-1927, Oct. 1999.Google Scholar
  33. 33.
    L. Hsu, W. Walukiewicz, “Effect of Polarization Fields on Transport Properties in AlGaN/GaN Heterostructures,” J. Appl. Phys. 89, 1783 (2001)Google Scholar
  34. 34.
    L. Hsu and W. Walukiewicz, Appl. Phys. Lett. 73, 339 (1998)Google Scholar
  35. 35.
    I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, J. Appl. Phys. 86, 4520 (1999)Google Scholar
  36. 36.
    M. S. Shur, A. D. Bykhovsky, and R. Gaska, Solid-State Electron. 44, 205 (2000)Google Scholar
  37. 37.
    P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang, and C. Shi, Solid-State Electron. 44, 211 (2000)Google Scholar
  38. 38.
    M. S. Shur, A. D. Bykhovsky, and R. Gaska, Solid-State Electron. 44, 205 (2000)Google Scholar
  39. 39.
    R. Oberhuber, G. Zandler, and P. Vogl, Appl. Phys. Lett. 73, 818 (1998)Google Scholar
  40. 40.
    N. Maeda, T. Nishida, N. Kobayashi, and M. Tomizawa, Appl. Phys. Lett. 73, 1856 (1998)Google Scholar
  41. 41.
    W. Walukiewicz, Appl. Phys. Lett. 54, 2094 (1989)Google Scholar
  42. 42.
    L. Hsu, and W Walukiewicz, Phys. Rev. B56, 1520 (1997)Google Scholar
  43. 43.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous Polarization and Piezoelectric Constants in III-V Nitrides,” Phys. Rev. B, Vol. 56, R10024, 1997.Google Scholar
  44. 44.
    A. Bykhovski, B. Gelmont, M. Shur: J. Appl. Phys. 74, 6734 (1993)Google Scholar
  45. 45.
    D. Bykhovski, B. L. Gelmont, M.S. Shur: J. Appl. Phys. 81, 6332 (1997)Google Scholar
  46. 46.
    J. G. Gualtieri, J. A. Kosinski, A. Ballato: IEEE Trans. UFFC-41, 53 (1994)Google Scholar
  47. 47.
    G. D. O’Clock, M. T. Duffy: Appl. Phys. Let. 23, 55 (1973)Google Scholar
  48. 48.
    A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected densityfunctional theory”, Phys. Rev. B 64, 45208 (2001)Google Scholar
  49. 49.
    G. Burns, Solid State Physics (Academic Press, New York 1985), pp. 88-92.Google Scholar
  50. 50.
    R.D. King-Smith, D. Vanderbilt, “Theory of polarization of crystalline solids”, Phys. Rev. B Vol. 47, Issue 3. pp. 1651-1654 1651 15 January 1993.Google Scholar
  51. 51.
    R. Resta: Rev. Mod. Phys. 66, 899 (1994)Google Scholar
  52. 52.
    For a review see, R. Resta, “Macroscopic Polarization in Crystalline Dielectrics: the Geometric Phase Approach,” Rev. Mod. Phys. 66, 899, (1994), and references therein.Google Scholar
  53. 53.
    . Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç, “Spontaneous and Piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction Modulation Doped FETs”, IEEE Trans on Electron devices, special issue, Eds. U. K. Mishra and J. Zolper, IEEE Trans. on Electron Devices, Vol. TED-48, no. 3, pp. 450-457, (2001)Google Scholar
  54. 54.
    H. Morkoç, H. Ünl ü , and G. Ji, Fundamentals and Technology of MODFETs, Vols. I and II (Wiley and Sons, Wiley, Chichesters, West Sussex, UK (1991)Google Scholar
  55. 55.
    G. Bastard, in “Wave Mechanics Applied to Semiconductor Heterostructures” , Edition de Physique, Paris , France, (1987).Google Scholar
  56. 56.
    R. Oberhuber, G. Zandler, and P. Vogl, Appl. Phys. Lett., 73, 818 (1998).Google Scholar
  57. 57.
    A. Di Carlo, S. Pescetelli, M. Paciotti, P. Lugli, and M. Graf, Solid State Comm. 98, 803 (1996)Google Scholar
  58. 58.
    A. Di Carlo, Phys. Stat. Solidi, 217, 703 (2000)Google Scholar
  59. 59.
    F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.M. Jancu, Appl. Phys. Lett., 74, 2002 (1999)Google Scholar
  60. 60.
    A. Di Carlo, F. Della Sala, P. Lugli, V. Fiorentini, F. Bernardini, Appl. Phys. Lett. 76, 3950 (2000)Google Scholar
  61. 61.
    R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Coli’, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, Phys. Rev.B, 61, 2711 (2000)Google Scholar
  62. 62.
    A. Bonfiglio, M. Lomascolo, G. Traetta, R. Cingolani, A. Di Carlo, F. Della Sala, P. Lugli, A. Botchkarev, H. Morkoç, J. App. Phys, 87, 2289 (2000)Google Scholar
  63. 63.
    H. Morkoç, H. Ünl ü , and G. Ji, Fundamentals and Technology of MODFETs, Vols. I and II (Wiley and Sons, Wiley, Chichesters, West Sussex, UK (1991)Google Scholar
  64. 64.
    P. Lugli, M. Paciotti, E. Calleja, E. Munoz, J.J. Sanchez-Rojas, F. Dessenne, R. Fauquembergue, J. L. Thobel, and G. Zandler: “HEMT Models and Simulations,” In “Pseudomorphic HEMTs: Technology and Applications”, Eds. R. Lee Ross, S. Swensson and P. Lugli, Kluwer Press, pp.141-163, Dordrecht, (1996)Google Scholar
  65. 65.
    . M. Abramowitz and I. A. Stegun, eds. “Handbook of Mathematical Functions (National Bureau of Standards Applied Mathematic Series, NO. 55) (US Government Printing Office) 1964:Google Scholar
  66. 66.
    T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems”, Rev. Mod. Phys. Vol. 54, No. 2, pp. 437-672, April 1982.Google Scholar
  67. 67.
    F.F. Fang and W.E. Howard, “Negative field-effect mobility on (100) Si surfaces”, Phys. Rev. Lett. Vol. 16(18), pp. 797-799, 1966.Google Scholar
  68. 68.
    V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B60, 8849 (1999)Google Scholar
  69. 69.
    A. Trellakis, A. T. Halick, A. Pacelli, and U. Ravaioli, J. Appl. Phys. 81, 7880 (1997)Google Scholar
  70. 70.
    Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt, “Accurate calculation of polarization-related quantities in semiconductors”, Phys. Rev. B, Vol. 63, 193-201 May 2001Google Scholar
  71. 71.
    F. Bechstedt, U. Grossner, and J. Furthm üller, “Dynamics and polarization of group-III nitride lattices: A first-principles study”, Phys. Rev. B 62, Issue 12, pp. 8003-8011, 15 September 2000.Google Scholar
  72. 72.
    M.A. Littlejohn, J. R. Hauser, T. H. Glisson: Appl. Phys. Lett. 26, 625 (1975)Google Scholar
  73. 73.
    A. Bykhovski, B. Gelmont, M. Shur: J. Appl. Phys. 77, 1616 (1995)Google Scholar
  74. 74.
    M. Shur, B. Gelmont, A. Khan: J. Electron. Mater. 25, 777 (1996)Google Scholar
  75. 75.
    . See for example, C. Kittel, Introduction to Solid State Physics, 7th edition, Wiley, 1996; J. S. Blakemore, “Solid State Physics”, 2nd Edition, Cambridge University Press, 1985; Walter Beam, “Electronics of Solids”, McGraw Hill, 1965.Google Scholar
  76. 76.
    Vincenzo Fiorentini, Fabio Della Sala, Aldo Di Carlo, and Paolo Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells”, Phys. Rev. B, Vol. 60, 8849-8858 (1999)Google Scholar
  77. 77.
    D. L. Rode, Phys. Rev., B2, 4036, (1970)Google Scholar
  78. 78.
    . M. Suzuki, T. Uenoyama: Electronic and optical properties of GaN based quantum wells, in Group III-Nitride Semiconductor Compounds, Physics and Applications, ed. by B. Gil (Clarendon, Oxford 1998)Google Scholar
  79. 79.
    A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M. A. Khan: Appl. Phys. Lett. 69, 3254 (1996)Google Scholar
  80. 80.
    F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys” Phys. Rev. B 64, 085207 (2001)Google Scholar
  81. 81.
    . Fabio Bernardini and Vincenzo Fiorentini, “Erratum: Nonlinear macroscopic polarization in III-V nitride alloys, Phys. Rev. B vol. 64, 085207 (2001): Phys. Rev. B Vol. 65, 129903(E) (15 March 2002)Google Scholar
  82. 82.
    . Fabio Bernardini and Vincenzo Fiorentini, “Nonlinear behavior of Spontaneous and Piezoelectric polarization”, International Workshop on Physics of Light-Matter Coupling in Nitrides (PLMCN-1), September Sept 26-29, (2001) Rome Italy, phys. stat. sol.(a), Vol. 190, No. 1, 65-73, (2002)Google Scholar
  83. 83.
    A.F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN”, J. Appl. Phys. Vol. Volume 82, Issue 6, pp. 2833-2839 September 15, 1997.Google Scholar
  84. 84.
    O Ambacher, J Majewski, C Miskys, A Link, M Hermann, M Eickhoff, M Stutzmann, F Bernardini, V Fiorentini, V Tilak, B Schaff and L F Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures”, J. Phys.: Condens. Matter Vol. 14, pp. 3399-3434, (2002)Google Scholar
  85. 85.
    C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer, “Sound velocity of AlxGa1 - xN thin films obtained by surface acoustic-wave measurements, Appl. Phys. Lett. Volume 72, Issue 19, pp. 2400-2402, May 11, 1998Google Scholar
  86. 86.
    . K. Tsubouchi, K. Sugai, and N. Mikoshiba, in 1981 Ultrasonics Symposium, edited by B. R. McAvoy (IEEE, New York, 1981), Vol. 1, p. 375.Google Scholar
  87. 87.
    M. S. Shur, A. D. Bykhovski and R. Gaska Mater. Res. Soc. Int. J. Nitr. Semicond. Res. S 41 G16 (1999)Google Scholar
  88. 88.
    G. D. O’Clock, M. T. Duffy: Appl. Phys. Let. 23, 55 (1973)Google Scholar
  89. 89.
    . For a review see, S. Karmalkar, M. S. Shur, and R. Gaska, “GaN based high electron mobility transistors” Chapter 3 in Wide Energy Bandgap Electronic Devices”, Eds. F. Ren and J. Zolper. World Scientific, ISBN 981-238-246-1, 2003Google Scholar
  90. 90.
    Rashmi, Angu Agrawal, S. Sen, S. Haldar, and R. S. Gupta, “Analytical model for DC characteristics and small-signal parameters of AlGaN/GaN modulation-doped field-effect transistor for microwave circuit applications”, Microwave and optical technology letters, Vol. 27, No. 6, pp. 413-419, December 20 2000Google Scholar
  91. 91.
    S. Bose, Adarsh, A. Kumar, Simrata, M. Gupta and R. S. Gupta, ”A complete analytical model of GaN MESFET for microwave frequency applications”, Microelectronics Journal Vol. 32, pp. 983-990, (2001)Google Scholar
  92. 92.
    Lehovec and R. Zuleeg, “Voltage-Current Characteristics of GaAs JFETs in the Hot Electron Range,” Solid State Electron., Vol. 13, pp. 1415-1426, 1970.Google Scholar
  93. 93.
    K. Lee, M.S. Shur, T.J. Drummond and H. Morkoç, “Parasitic MESFET in (Al,Ga)As/GaAs Modulation Doped FETs and MODFET Characterization,” IEEE Trans. Electron. Dev., Vol. ED-31, pp. 29-35, (1984)Google Scholar
  94. 94.
    E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, S. S. Lau, “Measurament of the piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors”, Appl. Phys. Lett. 71, 2794 (1997)Google Scholar
  95. 95.
    P. Ramvall, Y. Aoyagi, A. Kuramata, P. Hacke, K. Horino “Influence of a piezoelectric field on the electron distribution in a double GaN/Al0.14Ga0.86N heterojuction”, Appl. Phys. Lett. 74, 3866, (1999)Google Scholar
  96. 96.
    R. Gaska, J. W. Yang, A. Osinsky, A. D. Bykhovski, M. S. Shur, “Piezoeffect and gate current in AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett. 71, 3673, (1997)Google Scholar
  97. 97.
    R. Gaska, J. W. Yang, A. Osinsky, A. D. Bykhovski, M. S. Shur, V. V. Kaminski, S. M. Soloviov, “The influence of the deformation on the two-dimensional electron gas density in GaN-AlGaN heterostructure”, Appl. Phys. Lett. 72, 64, (1998)Google Scholar
  98. 98.
    B. Carnez, A. Cappy, A. Karzynski, E. Constant, and G. Salmer, “Modeling of a Submicrometer Gate Field Effect Transistor Including Effects of Nonstationary Electron Dynamics”, J. Appl. Phys. 51, 784-790, (1980)Google Scholar
  99. 99.
    P. A. Sandborn, J. R. East, and G. I. Haddad. “Quasi-Two-Dimensional Modelling of GaAs MESFET’s”, IEEE Trans. Electron Dev., ED-34, 985-991 (1987)Google Scholar
  100. 100.
    C. M. Snowden and R. R. Pantoja. Quasi-Two-Dimensional modelling MESFET simulation for CAD”, IEEE Trans. Electron Dev., ED-36, 1564-1573 (1989)Google Scholar
  101. 101.
    H. Morkoç: GaN-Based Modulation Doped FETs and UV detectors, Naval Research Reviews 51, 1 pp. 28-45 (1999)Google Scholar
  102. 102.
    M. J. Murphy, B. E. Foutz, K. Chu, H. Wu, W. Yeo, W. J. Schaff, O. Ambacher, L. F. Eastman, T. J. Eustis, R. Dmitrov, M. Stutzmann, and W. Riegerd, “Normal and inverted AlGaN/GaN based piezoelectric field effect transistors grown by plasma induced molecular beam epitaxy”,. MRS Internet J. Nitride Semicond. Res. 4S1, G8.4 (1999)Google Scholar
  103. 103.
    Y.F. Yu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U.K. Mishra, Appl. Phys. Lett. 69, 1438 (1996)Google Scholar
  104. 104.
    C. A. Liechti, “Microwave Field Effect Transistors”, IEEE Trans. Microwave Theory Tech., Vol. MTT-24, pp. 279, 1976.Google Scholar
  105. 105.
    . C. Weitzel, L. Pond, K. Moore, and M. Bhatnagar, “Effect of Device Temperature on RF FET Power Density,” Proc. of Silicon Carbide, III-Nitrides and Related Materials, ICSI, August 1997, Stockholm, Sweden, Trans Publications, Ltd., Materials Science Forum, Vols. 264-268, pp. 969-972 (1998)Google Scholar
  106. 106.
    M. Moloney, F. Ponse, and H. Morkoç, “Gate Capacitance Voltage Characteristics of MOD-FETs: Its Effect on Transconductance,” IEEE Trans. Electron. Dev. ED-32(9), 1675-1684, (1985)Google Scholar
  107. 107.
    S. Karmalkar, and U. K. Mishra, “Enahncement of breakdown voltage in AlGaN/GaN high electron mobility transistor using a field plate”, IEEE trans. on Elec. Dev. Vol. TED-48. No. 8, pp. 1515-1521, August 2001.Google Scholar
  108. 108.
    Y. Okamoto, Y. Ando, K. Hataya, H Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara,. “96 W AlGaN/GaN heterojunction FET with field-modulating plate”, Electronics Letters, vol. 39, no. 20, pp. 1474-1475, 2 Oct. 2003.Google Scholar
  109. 109.
    M.E. Lin, S. Strite, A. Agarwal, A. Salvador, G.L. Zhou, N. Teraguchi, A. Rockett and H. Morkoç, “GaN Grown on Hydrogen Plasma Cleaned 6H-SiC Substrates,” Appl. Phys. Letts., Vol. 62(7), pp. 702-704, (1993)Google Scholar
  110. 110.
    C. D. Lee, V. Ramachandran, A. Sagar, R. M. Feenstra, D. W. Greve, W. L. Sarney, L. Salamanca-Riba, D. C. Look, W. J. Choyke, R. P. Devaty, “Properties of GaN epitaxial layers grown on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy” TMS; IEEE. Journal of Electronic Materials, vol. 30, no. 3, pp. 162-9, March 2001.Google Scholar
  111. 111.
    J. A. Powell, D. J. Larkin and A. J. Trunek Use of Gaseous Etching for the Characterization of Structural Defects in Silicon Carbide Single Crystals. Silicon Carbide, III-Nitrides, and Related Materials. G. Pensl, H. Morkoç, B. Monemar and E. Janzen. Trans Tech Publications. 264-268: 421-424. (1998)Google Scholar
  112. 112.
    . J. A. Powell, D. J. Larkin, P. G. Neudeck, J. W. Yang and P. Pirouz. Investigation of Defects in Epitaxial 3C-SiC, 4H-SiC and 6H-SiC Films Grown on SiC Substrates. Silicon Carbide and Related Materials. M. G. Spencer, R. P. Devaty, J. A. Edmond et al. Bristol, IOP Publishing: 161-164. (1994)Google Scholar
  113. 113.
    . D. L. Rode, Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1975), Vol. 10, pp. 1-90.Google Scholar
  114. 114.
    K. Seeger, Semiconductor Physics, 2nd ed. (Springer, Berlin, 1982)Google Scholar
  115. 115.
    . H. Morkoç “Handbook of Nitride Semiconductors and Devices, Vols.”, Springer in press.Google Scholar
  116. 116.
    V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994)Google Scholar
  117. 117.
    D. L. Rode and D. K. Gaskill, Appl. Phys. Lett. 66, 1972 (1995)Google Scholar
  118. 118.
    S. C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87, 963 (2000)Google Scholar
  119. 119.
    B. K. Ridley, B. E. Foutz, and L. F. Eastman, Phys. Rev. B. Vol. 61, No. 24, pp. 1682-1689, 2000.Google Scholar
  120. 120.
    S. Dhar and S. Ghosh, J. Appl. Phys. 86, 2668 (1999)Google Scholar
  121. 121.
    V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994)Google Scholar
  122. 122.
    D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997)Google Scholar
  123. 123.
    M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim, and A. Yoshikawa, Appl. Phys. Lett. 77, 2557 (2000)Google Scholar
  124. 124.
    W. G ötz, L. T. Romano, J. Walker, N. M. Johnson, and R. J. Molnar, Appl. Phys. Lett. 72, 1214 (1998)Google Scholar
  125. 125.
    R. P. Joshi, Appl. Phys. Lett. 64, 223 (1994)Google Scholar
  126. 126.
    P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoç, and R. J. Molnar, Appl. Phys. Lett. 77, 3532 (2000)Google Scholar
  127. 127.
    H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. 73, 821 (1998)Google Scholar
  128. 128.
    Q. S. Zhu, and N. Sawaki, Appl. Phys. Lett. 76, 1594 (2000)Google Scholar
  129. 129.
    D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997)Google Scholar
  130. 130.
    D. Huang, F. Yun, P. Visconti, M. A. Reshchikov, D. Wang, H. Morkoç, D. L. Rode, Kurdak, K. T. Tsen, S. S. Park and K. Y. Lee, “Hall mobility and carrier concentration in GaN free-standing templates grown by hydride vapor phase epitaxy with high quality” Solid State Electronics, Vol. 45(5), pp. 711-715 (June 2001).Google Scholar
  131. 131.
    S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys. 71, 5543 (1992)Google Scholar
  132. 132.
    M. E. Lin, B. Sverdlov, G. L. Zhou, and H. Morkoç, Appl. Phys. Lett. 62, 3479 (1993)Google Scholar
  133. 133.
    H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. 73, 821 (1998)Google Scholar
  134. 134.
    D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999)Google Scholar
  135. 135.
    N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998)Google Scholar
  136. 136.
    Z. Q. Fang, D. C. Look, W. Kim, Z. Fan, A. Botchkarev, and H. Morkoç, Appl. Phys. Lett. 72,2277 (1998)Google Scholar
  137. 137.
    K. Wook, A. E. Botohkarev, H. Morkoç, Z. Q. Fang, D. C. Look, and D. J. Smith, J. Appl. Phys. 84, 6680 (1998)Google Scholar
  138. 138.
    B. Heying, I. Smorchkova, C. Poblenz, C. Elsass, P. Fini, S. Den Baars, U. Mishra, and J. S. Speck, “Optimization of the surface morphologies and electron mobilities in GaN grown by plasma-assisted molecular beam epitaxy”, Applied Physics Letters, Vol. 77, No. 18, pp. 2885-2887, 30 October 2000Google Scholar
  139. 139.
    M. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, D. V. Lang, and R. J. Molnar, “High-mobility AlGaN/GaN heterostructures grown by molecular-beam epitaxy on GaN templates prepared by hydride vapor phase epitaxy” Appl. Phys. Letts. Vol. 77, Issue 18, pp. 2888-2890, October 30, 2000Google Scholar
  140. 140.
    M. J. Manfra, N. G. Weimann, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, S. Syed, H. L. Stormer, W. Pan, D. V. Lang, S. N. G. Chu, G. Kowach, A. M. Sergent, J. Caissie, K. M. Molvar, L. J. Mahoney, and R. J. Molnar, “High mobility AlGaN/GaN heterostruc- tures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy”, J. of Appl. Phys., Vol. 92, No. 1, pp. 338-345, 1 July 2002Google Scholar
  141. 141.
    M. J. Manfra, K. W. Baldwin, A. M. Sergent, K. W. West, R. J. Molnar and J. Caissie, “Electron mobility exceeding 160 000 cm2 /V s in AlGaN/GaN heterostructures grown by molecular-beam epitaxy”, Appl. Phys. Lett. Vol. 85, No. 22, pp. 5394-5396, 29 November 2004.Google Scholar
  142. 142.
    E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski,G. Simin, X. Hu, M. Asif Khan, M. S. Shur, R. Gaska, and D. Maude, Appl. Phys. Letts., Vol. 77. No. 16, pp. 2551-2553, (2000)Google Scholar
  143. 143.
    E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. S. Shur, R. Gaska, and D. Maude, “High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates” Appl. Phys. Letts., Vol. 77. No. 16, pp. 2551-2553, (2000)Google Scholar
  144. 144.
    . J. Cui, and A. Sun, M. Reshichkov, F. Yun, A. Baski, and H. Morkoç, “Preparation of Sap-phire for High Quality III-Nitride Growth”, MRS Internet Journal - The URL for the front page is http://nsr.mij.mrs.org/5/7/.
  145. 145.
    J. A Powell, D. J. Larkin and A. J. Trunek, “Use of Gaseous Etching for the Characterization of Structural Defects in Silicon Carbide Single Crystals,” Silicon Carbide, III-Nitrides, and Related Materials. G. Pensl, H. Morkoç, B. Monemar and E. Janzen. Sweden, Trans Tech Publications. 264-268: 421-424, (1998).Google Scholar
  146. 146.
    E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 82, 5472 (1997)Google Scholar
  147. 147.
    B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck, J. Appl. Phys. 88,1855 (2000)Google Scholar
  148. 148.
    O. Aktas, W. Kim, Z. Fan, S.N. Mohammad, A. Botchkarev, A. Salvador, B. Sverdlov, and H. Morkoç, “High Transconductance-Normally-Off GaN MODFETs,” Electron. Lett. 31(16),1389-1390, (1995)Google Scholar
  149. 149.
    . J.S. Moon, W-S, Wong, M. Micovic, M. Hu M, J. Duvall, M. Antcliffe, T. Hussain, P. Hashimoto, and L McCray, “High performance recessed gate AlGaN/GaN HEMTs”, . Compound Semiconductors 2001. Proceedings of the Twenty-Eighth International Symposium on Compound Semiconductors. IOP Publishing. 2002, pp. 27-32.Google Scholar
  150. 150.
    T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, “Recessed gate AlGaN/GaN modulation-doped field-effect transistors on sapphire”, Appl. Phys. Lett. Vol. 76, No. 1, pp. 121-123, 3 January 2000Google Scholar
  151. 151.
    Takashi Egawa, Guang-Yuan Zhao, Hiroyasu Ishikawa, Masayoshi Umeno, and Takashi Jimbo, “Characterizations of Recessed Gate AlGaN/GaN HEMTs on Sapphire”, IEEE Trans. on Electron. Dev. Vol. 48, No. 3, pp. 603-608 March 2001Google Scholar
  152. 152.
    Jong-Wook Kim, Jae-Seung Lee, Won-Sang Lee, Jin-Ho Shin Doo-Chan Jung, Moo-Whan Shin, Chang-Seok Kim, Jae-Eung Oh, Jung-Hee Lee, Sung-Ho Hahm, “Microwave performance of recessed gate Al0.2Ga0.8N/GaN HFETs fabricated using a photoelectrochemical etching technique” Materials Science and Engineering B Vol. 95, pp. 73-76 (2002)Google Scholar
  153. 153.
    . Y. Okamoto, A. Wakejima, K. Matsunaga, Y. Ando, T. Nakayama, K. Kasahara, K. Ota, Y. Murase, K. Yamanoguchi, T. Inoue and H. Miyamoto, “C-band Single-Chip GaN-FET Power Amplifiers with 60-W Output Power”, Microwave Symposium Digest, IEEE MTT-S International, pp. 491-494, 12-17 June 2005Google Scholar
  154. 154.
    Yasuhiro Okamoto, Yuji Ando, Tatsuo Nakayama, Koji Hataya, Hironobu Miyamoto, Takashi Inoue, Masanobu Senda, Koji Hirata, Masayoshi Kosaki, Naoki Shibata, and Masaaki Kuzuhara, “High-Power Recessed-Gate AlGaN-GaN HFET With a Field-Modulating Plate”, IEEE Transactions on Electron Devices, V. 51, No. 12, p. 2217-2222, (2004)Google Scholar
  155. 155.
    Y. Okamoto, Y. Ando, K. Hataya, T. Nakayama, H. Miyamoto, T. Inoue, M. Senda, K. Hirata, M. Kosaki, N. Shibata, and M. Kuzuhara, “A 149W Recessed-Gate AlGaN/GaN FPFET”, Microwave Symposium Digest, 6-11 June 2004 IEEE MTT-S International, Vol. 3, pp. 1351-1354, 2004Google Scholar
  156. 156.
    Y. Okamoto, Y. Ando, K. Hataya, T. Nakayama, H. Miyamoto, T. Inoue, M. Senda, K. Hirata, M. Kosaki, N. Shibata, and M. Kuzuhara,,“Improved Power Performance for a Recessed-Gate AlGaN-GaN Heterojunction FET With a Field-Modulating Plate”, IEEE Transactions on Microwave theory and techniques, Vol. 52, No. 11, pp. 2536-2540, (2004)Google Scholar
  157. 157.
    Takashi Inoue, Yuji Ando, Hironobu Miyamoto, Tatsuo Nakayama,Yasuhiro Okamoto,Kohji Hataya, and Masaaki Kuzuhara, “30-GHz-Band Over 5-W Power Performance of ShortChannel AlGaN/GaN Heterojunction FETs”, IEEE Transactions on Microwave Theory and Techniques, Vol 53, No. 1, pp. 74-80 (2005)Google Scholar
  158. 158.
    N. Moll, M. R. Hueshen, and A. Fisher-Colbie, “Pulse-doped AlGaAs/InGaN’s pseudomorphic MODFETs,” IEEE Trans. ElectronDevices, vol. 35, no. 7, pp. 879-886, July1988.Google Scholar
  159. 159.
    P. J. Tasker and B. Hughes, “Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 291-293, Jul. 1989.Google Scholar
  160. 160.
    . J.S. Moon, M. Micovic, A. Kurdoghlian, P. Janke, P. Hashimoto, W-S Wong, L. McCray, and C. Nguyen. “Microwave noise performance of AlGaN-GaN HEMTs with small DC power dissipation”, IEEE Electron Device Letters, vol.23, no.11, pp.637-639, Nov. 2002Google Scholar
  161. 161.
    P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. L üth, and P. Kordoš, “AlGaN/GaN HEMTs on (111) Silicon Substrates”, IEEE Electron Device Letters, Vol. 23, no. 1, pp. 4-6, January 2002Google Scholar
  162. 162.
    Eduardo M. Chumbes, A. T. Schremer, Joseph A. Smart, Y. Wang, Noel C. MacDonald, D. Hogue, James J. Komiak, Stephen J. Lichwalla, Robert E. Leoni, III, and James R. Shealy, “AlGaN/GaN High Electron Mobility Transistors on Si(111) Substrates”, IEEE Trans. on Electron. Dev. Vol. 48, No. 3, pp. 420-425 March 2001Google Scholar
  163. 163.
    J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal,J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum, “12 W/mm AlGaN-GaN HFETs on Silicon Substrates” IEEE Electron Device Letters, vol. 25, no. 7, pp. 459-461, July. 2004Google Scholar
  164. 164.
    Z. Yang, A. Koudymov, V. Adivarahan, J. Yang, G. Simin,and M. A. Khan, “High-Power Operation of III-N MOSHFET RF Switches” IEEE Microwave and wireless components letters, V. 15, No.12, pp. 850-852, 2005Google Scholar
  165. 165.
    Yasuhiro Okamoto,Yuji Ando, Koji Hataya, Tatsuo Nakayama, Hironobu Miyamoto, Takashi Inoue, Masanobu Senda, Koji Hirata, Masayoshi Kosaki, Naoki Shibata, and Masaaki Kuzuhara , “Improved Power Performance for a Recessed-Gate AlGaN-GaN Heterojunction FET With a Field-Modulating Plate”, IEEE Transactions on Microwave theory and techniques, Vol. 52, No. 11, pp. 2536-2540, 2004Google Scholar
  166. 166.
    K. E. Moore, C. E. Weitzel, K. J. Nordquist, L. L. Pond, III, J. W. Palmour, S. Allen, and C. H. Carter, Jr., IEEE Electron. Dev. Lett., 18(2), 69-70, (1997)MATHGoogle Scholar
  167. 167.
    T. P Chow and R. Tyagi, IEEE Trans. Electron Devices, Vol. 41, 1481 (1994)Google Scholar
  168. 168.
    . S. M. Sze, “Physics of Semiconductor Devices”, Wiley 2nd ed. 1982.Google Scholar
  169. 169.
    Z. Bandic, E. C. Piquette, P. M. Bridger, R. A. Beach, T. F. Kuech, and T. C. McGill, “Nitride based high power devices: Design and fabrication issues”, Solid State Electronics, Vol. 42, No. 12, pp. 2289-2294, 1998.Google Scholar
  170. 170.
    W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse, “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors”, Applied Physics Letters, Vol. 80, No. 17, pp. 3207-3209, 29 April 2002Google Scholar
  171. 171.
    Takeshi Nakao, Yutaka Ohno, Shigeru Kishimoto, Koichi Maezawa, Takashi Mizutani, “Study on off-state breakdown in AlGaN/GaN HEMTs”, phys. stat. sol. (c) 0, No. 7, 2335-2338 (2003)Google Scholar
  172. 172.
    Maziar Farahmand, Michael Weber, Louis Tirino, Kevin F. Brennan, and P. Paul Ruden, “Theoretical study of direct-current and radio-frequency breakdown in GaN wurtzite- and zinc-blende-phase MESFETs (metal-semiconductor field-effect transistors)”, J. Phys.: Condens. Matter Vol. 13, pp. 10477-10486 (2001)Google Scholar
  173. 173.
    K. F. Brennan, “The Physics of Semiconductors with Applications to Optoelectronic Devices” (Cambridge: Cambridge University Press) p. 512 (1999)Google Scholar
  174. 174.
    J. Kolnik, I. H. Oguzman, K. F. Brennan, R. Wang and P. P. Ruden J. Appl. Phys. Vol. 79, p. 8838, (1996)Google Scholar
  175. 175.
    J. Kolnik, I. H. Oguzman, K. F. Brennan, J. Kolnik, R. Wang, and P. P. Ruden “Theoretical prediction of zinc blende phase GaN avalanche photodiode performance based on numerically calculated electron and hole impact ionization rate ratio”, Mat Res Soc Symp Proc; Vol. 423, pp. 45-50, (1996)Google Scholar
  176. 176.
    J. Kolnik, I. H. Oguzman, K. F. Brennan, R. Wang and P. P. Ruden J. Appl. Phys. Vol. 81, p. 726,(1997)Google Scholar
  177. 177.
    I. H. Oguzman. E. Belloti, K. F. Brennan, J. Kolnik, R. Wang, and P. P. Ruden, “Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN”, J Appl. Phys, Vol. 81, pp. 7827-7834, (1997)Google Scholar
  178. 178.
    A. P. Zhang, G. T. Dang, H. Cho, K. P. Lee, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, IEEE Trans. Electron Devices 48, 407 (2001)Google Scholar
  179. 179.
    V. A. Dmitriev, K. G. Irvine, and C. H. Carter, Jr., Appl. Phys. Lett. 68, 229 (1996)Google Scholar
  180. 180.
    S. Mizuno, Y. Ohno, S. Kishimoto, K, Maezawa, and T. Mizutani, “Large gate leakage current in AlGaN/GaN high electron mobility transistors”. Jpn. Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, no. 8, pp. 5125-5126, Aug. 2002.Google Scholar
  181. 181.
    P. A. Wolff, Phys. Rev. 95 1415 (1954)Google Scholar
  182. 182.
    M. Reigrotzki, R. Redmer, N. Fitzer, S.M. Goodnick, M. Dur, W. Schattke, “Hole initiated impact ionization in wide band gap semiconductors”, J. of Applied Physics, vol. 86, no. 8, pp. 4458-4463, 15 Oct. 1999.Google Scholar
  183. 183.
    B. K. Ridley, J. Phys.: Condens. Matter, Vol. 8, L511 (1996)Google Scholar
  184. 184.
    Y. Okuto and C. R. Crowell, Phys. Rev. B, Vol. 6, 3076 (1972)Google Scholar
  185. 185.
    S. C. Binari, K. Ikossi-Anastasiou, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, Special Issue of IEEE Electron Dev. Vol. 48, pp. 465-471, (2001)Google Scholar
  186. 186.
    R. Fischer, T.J. Drummond, J. Klem, W. Kopp, T. Henderson, D. Perrachione and H. Morkoç, “On the Collapse of Drain I-V Characteristics in Modulation Doped FETs at Cryogenic Temperatures,” IEEE Trans. Electron. Dev., Vol. ED-31, pp. 1028-1032, 1984.Google Scholar
  187. 187.
    W. Kruppa, S. C. Binari, and K. Doverspike, “Low-frequency dispersion characteristics of GaN HFETs,” Electronics Lett., vol. 31, pp. 1951-1952, 1995.Google Scholar
  188. 188.
    P. B. Klein, J. A. Freitas, Jr., S. C. Binari, and A. E. Wickenden, ‘Observation of deep traps responsible for current collapse in GaN metal-semiconductor field-effect transistors,’ Appl. Phys. Lett., 75, Issue 25, pp. 4016-4018 (1999)Google Scholar
  189. 189.
    E. Kohn, I. Daumiller, P. Schmid, N.X. Nguyen, and C.N. Nguyen, ‘Large signal frequency dispersion of AlGaN/GaN HEMTs,’ Electron. Lett., 35, 1022 (1999)Google Scholar
  190. 190.
    D.V. Kuksenkov, H. Temkin, R. Gaska, and J.W. Yang, ‘Low-frequency noise in Al-GaN/GaN heterostructure field effect transistors,’ IEEE Electron Device Lett. 19, 222 (1998)Google Scholar
  191. 191.
    S.L. Rumyantsev, N. Pala, M.S. Shur, E. Borovitskaya, A.P. Dmitriev, M.E. Levinshtein, R. Gaska, M.A. Khan, J. Yang, X. Hu, and G. Simin, ‘Generation-Recombination Noise in GaN/AlGaN Heterostructure Field Effect Transistors,’ IEEE Trans Electron Dev., 48, 530 (2001)Google Scholar
  192. 192.
    P.H. Handel, “1/f Noise - an ‘Infrared’ Phenomenon”, Phys. Rev. Letters Vol. 34, pp. 1492-1494 (1975)Google Scholar
  193. 193.
    P. H. Handel, “Nature of 1/f Phase Noise”, Phys. Rev. Letters, Vol. 34, pp. 1495-1497 (1975)Google Scholar
  194. 194.
    C. Nguyen, N. X. Nguyen, and D. E. Grider, “Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies,” Electronics. Lett., vol. 35, pp. 1380-1382, 1999.Google Scholar
  195. 195.
    Oleg Mitrofanov and Michael Manfra, “Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors”, Superlattices and Microstructures, Vol. 34, pp. 33-53, (2003)Google Scholar
  196. 196.
    S. Trassaert, B. Boudart, C. Gaquiere, D. Theron, Y. Crosnier, F. Huet, and M.A. Poisson, ‘Trap effect studies in GaN MESFETs by pulsed measurements,’ Elecronics Lett., 35, 1386 (1999)Google Scholar
  197. 197.
    S.L. Rumyantsev, M.S. Shur, R. Gaska, X. Hu, A. Khan, G. Simin, J. Yang, N. Zhang, S. DenBaars, and U.K. Mishra, ‘Transient processes in AlGaN/GaN heterostructure field effect transistors,’ Electron. Lett., 36, 757 (2000)Google Scholar
  198. 198.
    B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, and L.F. Eastman, ‘The effects of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,’ IEEE Electron Device Lett., 21, 268 (2000)Google Scholar
  199. 199.
    E.J. Miller, X.Z. Dang, H.H. Wieder, P.H. Asbeck, E.T. Yu, G.J. Sullivan, and J.M. Redwing, ‘Trap characterization by gate-drain conductance and capacitance dispersion studies of an AlGaN/GaN heterostructure field-effect transistor,’ J. Appl. Phys., 87, 8070 (2000)Google Scholar
  200. 200.
    A.V. Vertiatchikh, L.F. Eastman, W.J. Schaff, and T. Prunty, ‘Effects of surface passivation of AlGaN/GaN heterostructure field effect transitor’ Electron Lett. 38, 388 (2002)Google Scholar
  201. 201.
    S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, ‘Comparative study of drain-current collapse in AlGaN/GaN high-electron mobility transistors on sapphire and semi-insulating SiC,’ Appl. Phys. Lett., 81, 3073 (2002)Google Scholar
  202. 202.
    H. Marso, M. Wolter, P. Javorka, P. Kordoš, and H. L üth, ‘Investigation of buffer traps in an AlGaN/GaN/Si high electron mobility transistor by backgating current deep level transient spectroscopy’, Appl. Phys. Lett., 82, 633 (2003)Google Scholar
  203. 203.
    A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, V. N. Danilin, T. A. Zhukova, B. Luo, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, and S. J. Pearton, ‘Deep traps in unpassivated and Sc2O3-passivated AlGaN/GaN high electron mobility transistors’, Appl. Phys. Lett., 83, 2608 (2003)Google Scholar
  204. 204.
    P. B. Klein, “Photoionization spectroscopy in AlGaN/GaN high electron mobility transistors”, J. Appl. Phys. 92, No. 9, pp. 5498-5502, November 1, 2002.Google Scholar
  205. 205.
    J. I. Izpura, “Drain current collapse in GaN metal-semiconductor field-effect Transistors due to surface band-bending effects”, Semicond. Sci. Technol. Vol. 17, pp. 1293-1301 (2002)Google Scholar
  206. 206.
    P. B. Klein, S. C. Binari, K. Ikossi-Anastasiou, A. E. Wickenden, D.D. Koleske, R.L. Henry, and D.S. Katzer, ‘Investigation of traps producing current collapse in AlGaN/GaN high electron mobility transistors,’ Electron. Lett. 37, 661 (2001)Google Scholar
  207. 207.
    J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J. S. Speck, and U. K. Mishra, ‘Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors’, Appl. Phys. Lett. 77, 250 (2000)Google Scholar
  208. 208.
    R. Vetury, Q. Zhang, S. Keller, and U.K. Mishra, ‘The impact of surface states on the DC and RF Characteristics of AlGaN/GaN HFETs’ IEEE Trans. Electron Devices 48, 560 (2001)Google Scholar
  209. 209.
    A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 1499 (2000)Google Scholar
  210. 210.
    G. Koley, V. Tilak, L.F. Eastman and M. Spencer, ‘Slow transients observed in AlGaN/GaNHFETs: Effects of SiNx passivation and UV illumination’, IEEE T Electron Dev., 50, 886 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hadis Morkoc
    • 1
  • Jacob Leach
    • 1
  1. 1.Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations