Functionally Graded Polar Heterostuctures: New Materials for Multifunctional Devices

  • Debdeep Jena
  • S. Pamir Alpay
  • Joseph V. Mantese

Mixing materials of different compositions is an ancient art. As early as 3000 B.C., metallic alloys - brass & bronze were used for sculpture work. Over the last century, major strides were made in the art of crystal growth of metals, dielectrics, and semiconductors. An alloy offers an opportunity to exploit physical, electrical, and optical properties of materials which are either intermediate, or absent in its constituent materials. This has been the driving force behind the study and discovery of new generations of alloys. With the advent of epitaxial growth techniques such as Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD), such hybrid materials can now be engineered at the atomic scale.


Spontaneous Polarization AlGaN Layer Piezoelectric Polarization Ionize Impurity Scattering Sheet Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . E. archive New Semiconductor Materials Characteristics and Properties http://www.ioffe.
  2. 2.
    . P. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties. Berlin: Springer Verlag, 1st ed., 1996.Google Scholar
  3. 3.
    O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, p. 334, 2000.CrossRefGoogle Scholar
  4. 4.
    C. Mailhiot and D. L. Smith, “Electronic structure of [001]- and [111]-growth-axis semiconductor superlattices,” Phys. Rev. B, vol. 35, p. 1242, 1987.CrossRefGoogle Scholar
  5. 5.
    D. C. Look and R. J. MolnarAppl. Phys. Lett., vol. 70, p. 3377, 1997.CrossRefGoogle Scholar
  6. 6.
    J. W. P. Hsu, D. V. Lang, S. Richter, R. N. Kleiman, A. M. Sergent, and R. J. Molnar Appl. Phys. Lett., vol. 77, p. 2673, 2000.Google Scholar
  7. 7.
    S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra Appl. Phys. Lett., vol. 81, p. 439, 2002.CrossRefGoogle Scholar
  8. 8.
    J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 77, p. 250, 2000.CrossRefGoogle Scholar
  9. 9.
    S. Keller, S. Heikman, L. Shen, I. P. Smorchkova, S. P. DenBaars, and U. K. Mishra Appl. Phys. Lett., vol. 80, p. 4387, 2002.CrossRefGoogle Scholar
  10. 10.
    P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, p. 865, 2000.CrossRefGoogle Scholar
  11. 11.
    R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, and P. LugliPhys. Rev. B, vol. 61, p. 2711, 2000.CrossRefGoogle Scholar
  12. 12.
    U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTS: An overview of device operation and applications,” Proceedings of the IEEE., vol. 90, p. 1022, 2002.CrossRefGoogle Scholar
  13. 13.
    A. Jimenez, D. Buttari, D. Jena, R. Coffie, S. Heikman, N. Zhang, L. Shen, E. Calleja, E. Munoz, J. Speck, and U. K. MishraIEEE Elect. Dev. Lett., vol. 23, p. 306, 2002.CrossRefGoogle Scholar
  14. 14.
    T. F. Kuech, R. T. Collins, D. L. Smith, and C. Mailhiot, “Field-effect transistor structure based on strain-induced polarization charges,” J. Appl. Phys., vol. 67, p. 2650, 1990.CrossRefGoogle Scholar
  15. 15.
    E. S. Snow, B. V. Shanabrook, and D. Gammon Appl. Phys. Lett., vol. 56, p. 758, 1990.CrossRefGoogle Scholar
  16. 16.
    P. Kozodoy, I. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel J. Appl. Phys., vol. 75, p. 2444, 1999.Google Scholar
  17. 17.
    P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang, and C. Shi, “Enhancement of base conductivity via the piezoelectric effect in AlGaN/GaN HBTs,” Solid-State Electron., vol. 44, p. 211, 2000.CrossRefGoogle Scholar
  18. 18.
    M. Singh, Y. Zhang, J. Singh, and U. K. Mishra Appl. Phys. Lett., vol. 77, p. 1867, 2000.CrossRefGoogle Scholar
  19. 19.
    L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin Appl. Phys. Lett., vol. 55, p. 1888, 1989.CrossRefGoogle Scholar
  20. 20.
    M. Shayegan, T. Sajoto, M. Santos, and C. Silvestre Appl. Phys. Lett., vol. 53, p. 791, 1988.CrossRefGoogle Scholar
  21. 21.
    A. C. Gossard, M. Sundaram, and P. F. Hopkins, Epitaxial Microstructures, Semiconductors and Semimetals, vol 40. San Diego: Academic Press, 1st ed., 1994.Google Scholar
  22. 22.
    B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck J. Appl. Phys., vol. 88, p. 1855, 2000.CrossRefGoogle Scholar
  23. 23.
    O. Brandt, P. Waltereit, and K. Ploog J. Phys. D: Appl. Phys., vol. 35, p. 577, 2002.CrossRefGoogle Scholar
  24. 24.
    . G. L. Snider 1DPoisson, gsnider/.
  25. 25.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, p. R10 024, 1997.CrossRefGoogle Scholar
  26. 26.
    W. G. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler Appl. Phy. Lett., vol. 68, p. 3144, 1996.CrossRefGoogle Scholar
  27. 27.
    J. Simon, K. Wang, H. Xing, D. Jena, and S. Rajan, “Carrier transport and confinement in polarization-induced 3D electron slabs: Importance of alloy scattering in AlGaN,” Appl. Phys. Lett., vol. 88, p. 042-109, 2006.Google Scholar
  28. 28.
    S. Rajan, S. DenBaars, U. K. Mishra, H. Xing, and D. Jena, “Electron mobility in graded AlGaN alloys,” Appl. Phys. Lett., vol. 88, p. 042-103, 2006.CrossRefGoogle Scholar
  29. 29.
    D. Jena, A. C. Gossard, and U. K. Mishra, “Dipole scattering in polarization induced III-V Nitride two-dimensional electron gases,” J. Appl. Phys., vol. 88, p. 4734, 2000.CrossRefGoogle Scholar
  30. 30.
    W. Zhao and D. Jena, “Dipole scattering in Highly Polar Semiconductor Alloys,” J. Appl. Phys., vol. 96, p. 2095, 2004.CrossRefGoogle Scholar
  31. 31.
    D. N. Quang, N. H. Tung, N. V. Tuoc, N. V. Minh, and P. N. Phong, “Roughness-induced piezoelectric charges in wurtzite group-III-nitride heterostructures,” Phys. Rev. B, vol. 72, p. 115-337, 2005.Google Scholar
  32. 32.
    L. M. Roth and P. M. Argyres Semiconductors and Semimetals, vol. 1, p. 159, 1966.CrossRefGoogle Scholar
  33. 33.
    . C. Hamaguchi Basic Semiconductor Physics, p. 280, 2001.Google Scholar
  34. 34.
    R. B. DingleProc. Roy. Soc., vol. A211, p. 517, 1952.Google Scholar
  35. 35.
    R. Kubo, H. Hasegawa, and N. Hashitsume J. Phys. Soc. Japan, vol. 14, p. 56, 1959.CrossRefGoogle Scholar
  36. 36.
    D. Jena, S. Heikman, J. S. Speck, A. C. Gossard, U. K. Mishra, A. Link, and O. Ambacher, “Magnetotransport properties of a polarization-doped three-dimensional electron slab,” Phys. Rev. B, vol. 67, p. 153-306, 2003.CrossRefGoogle Scholar
  37. 37.
    G. Bauer and H. Kahlert, “Low-Temperature Non-Ohmic Galvanomagnetic Effects in Degenerate n-type InAs,” Phys. Rev. B, vol. 5, p. 566, 1972.CrossRefGoogle Scholar
  38. 38.
    Y. Katayama and S. TanakaPhys. Rev., vol. 153, p. 873, 1967.CrossRefGoogle Scholar
  39. 39.
    M. R. Boon Phys Rev. B, vol. 7, p. 761, 1973.CrossRefGoogle Scholar
  40. 40.
    B. L. Altshuler, D. Khmelnitzkii, I. A. Larkin, and P. A. Lee Phys Rev. B, vol. 22, p. 5142, 1980.CrossRefGoogle Scholar
  41. 41.
    T. Wang, Y. Ohno, M. Lachab, D. Nakagawa, T. Shirahama, S. Sakai, and H. Ohno Appl. Phys. Lett., vol. 74, p. 3531, 1995.CrossRefGoogle Scholar
  42. 42.
    A. F. Brana, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Munoz, and F. Omnes J. Appl. Phys., vol. 88, p. 932, 2000.CrossRefGoogle Scholar
  43. 43.
    R. J. Sladek Phys Rev., vol. 110, p. 817, 1958.CrossRefGoogle Scholar
  44. 44.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan J. Appl. Phys., vol. 89, p. 8815, 2001.CrossRefGoogle Scholar
  45. 45.
    S. Elhamri, R. S. Newrock, D. B. Mast, M. Ahoujja, W. C. Mitchel, J. M. Redwing, M. A. Tischler, and J. S. Flynn Phys Rev. B, vol. 57, p. 1374, 1998.CrossRefGoogle Scholar
  46. 46.
    W. Knap, S. Contreras, H. Alause, C. Skierbiszewski, J. Camassel, M. Dyakonov, J. L. Robert, J. Yang, Q. Chen, M. A. Khan, M. L. Sadowski, S. Huant, F. H. Yang, M. Goian, J. Leotin, and M. S. Shur Appl. Phys. Lett., vol. 70, p. 2123, 1997.CrossRefGoogle Scholar
  47. 47.
    A. Saxler, P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck J. Appl. Phys., vol. 87, p. 369, 2000.CrossRefGoogle Scholar
  48. 48.
    Z. W. Zheng, B. Shen, R. Zhang, Y. S. Gui, C. P. Jiang, Z. X. Ma, G. Z. Zheng, S. L. Gou, Y. Shi, P. Han, Y. D. Zheng, T. Someya, and Y. Arakawa Phys Rev. B, vol. 62, p. R7739, 2000.CrossRefGoogle Scholar
  49. 49.
    D. Jena and U. K. Mishra, “Quantum and classical scattering times due to charged dislocations in an impure electron gas,” Phys. Rev. B, vol. 66, p. 241-307, 2002.CrossRefGoogle Scholar
  50. 50.
    J. P. Harrang, R. J. Higgins, R. K. Goodall, P. R. Ray, M. Laviron, and P. Delescluse Phys Rev. B, vol. 32, p. 8126, 1985.CrossRefGoogle Scholar
  51. 51.
    L. Hsu and W. Walukiewicz Appl. Phys. Lett., vol. 80, p. 2508, 2002.CrossRefGoogle Scholar
  52. 52.
    W. Walukiewicz, P. F. Hopkins, M. Sundaram, and A. C. Gossard Phys Rev. B., vol. 44, p. 10909, 1991.CrossRefGoogle Scholar
  53. 53.
    D. Jena and U. K. Mishra, “Quantum and classical scattering times due to dislocations in an impure electron gas,” Phys. Rev. B, vol. 66, p. 241307(Rapids), 2002.CrossRefGoogle Scholar
  54. 54.
    . B. I. Halperin, “Possible States of a Three-Dimensional Electron Gas in a Strong Magnetic Field,” Jpn. J. Appl. Phys., vol. 26, p. (suppl.3), 1987.Google Scholar
  55. 55.
    R. Gaska, M. S. Shur, X. Hu, J. W. Yang, A. Tarakji, G. Simin, A. Khan, J. Deng, T. Werner, S. Rumyantsev, and N. Pala Appl. Phys. Lett., vol. 78, p. 769, 2001.CrossRefGoogle Scholar
  56. 56.
    M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson Appl. Phys. Lett., vol. 63, p. 1214, 1993.CrossRefGoogle Scholar
  57. 57.
    S. C. Binari, L. B. Rowland, W. Kruppa, G. Kelner, K. Doverspike, and D. K. GatskillElectron. Lett., vol. 30, p. 1248, 1994.CrossRefGoogle Scholar
  58. 58.
    J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall Appl. Phys. Lett., vol. 68, p. 2273, 1996.CrossRefGoogle Scholar
  59. 59.
    T. Egawa, K. Nakamura, H. Ishikawa, T. Jimbo, and M. UmenoJpn. J. Appl. Phys. Part 1, vol. 38, p. 2630, 1999.CrossRefGoogle Scholar
  60. 60.
    L. Zhang, L. F. Ester, A. G. Baca, R. J. Shul, P. C. Chang, C. G. Willinson, U. K. Mishra, S. P. DenBaars, and J. C. Zolper, “Epitaxially-grown GaN junction field effect transistors,” IEEE Trans. El. Dev., vol. 47, p. 507, 2000.CrossRefGoogle Scholar
  61. 61.
    S. Rajan, H. Xing, S. DenBaars, U. K. Mishra, and D. Jena, “AlGaN/GaN polFETs for microwave power applications,” Appl. Phys. Lett., vol. 84, p. 1591, 2004.CrossRefGoogle Scholar
  62. 62.
    Matulionis, A., “High-Field transport in III-V Nitride FETs - a Hot Phonon Bottleneck,” Hot Carriers in Semiconductors (Conference), Chicago, p. (In press), 2005.Google Scholar
  63. 63.
    K. Wang, J. Simon, N. Goel, and D. Jena, “Optical study of hot-electron transport in GaN: Signatures of the hot-phonon effect,” Appl. Phys. Lett., vol. 88, p. 022-103, 2006.Google Scholar
  64. 64.
    C. H. Oxley and M. J. Uren, “Measurement of Unity Gain Cutoff Frequency and Saturation Velocity of a GaN HEMT Transistor,” IEEE Trans. Electron. Dev., vol. 52, no. 2, p. 165, 2005.CrossRefGoogle Scholar
  65. 65.
    Liberis, J. Ramons, M. Kiprijanovic, O. Matulionis, A. Goel, N. Simon, J. Wang, K. Xing, H. Jena, D., “Hot-phonons in Si-doped GaN,” Appl. Phys. Lett., vol. 89, p. 202-117, 2006.CrossRefGoogle Scholar
  66. 66.
    E. Fatuzzo and W. J. Merz, Ferroelectricity. New York: John Wiley and Sons, Inc., 1967.Google Scholar
  67. 67.
    J. Smit and H. P. J. Wijn, Ferrite. New York: John Wiley and Sons, Inc., 1959.Google Scholar
  68. 68.
    E. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge: Cambridge Univeristy Press, 1990.Google Scholar
  69. 69.
    L. Landau and E. Lifshitz, Statistical Physics. Oxford: Pergamon Press, 1980.Google Scholar
  70. 70.
    R. Kretschmer and K. Binder, “Surface effects on phase transitions in ferroelectrics and dipole magnets,” Physical Review B, vol. 20, no. 3, pp. 1065-1075, 1979.CrossRefGoogle Scholar
  71. 71.
    B. Strukov and A. Levanyuk, Ferroelectric Phenomena in Crystals. Berlin: Spring-Verlag, 1998.MATHGoogle Scholar
  72. 72.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, vol. 8. Butterworth-Heinemann: Elsevier, 2nd ed., 1984.Google Scholar
  73. 73.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, vol. 7. Butterworth-Heinemann: Elsevier, 2nd ed., 1984.Google Scholar
  74. 74.
    N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Physical Review Letters, vol. 80, no. 9, pp. 1988-1991, 1998.CrossRefGoogle Scholar
  75. 75.
    N. Sai, B. Meyer, and D. Vanderbilt, “Compositional inversion symmetry breaking in ferroelectric perovskites,” Physical Review Letters, vol. 84, pp. 5636-5639, 2000.CrossRefGoogle Scholar
  76. 76.
    N. Sai, K. M. Rabe, and D. Vanderbilt, “Theory of structural response to macroscopic electric fields in ferroelectric systems,” Physical Review B, vol. 66, pp. 104108-104125, 2002.CrossRefGoogle Scholar
  77. 77.
    J. B. Neaton and K. M. Rabe, “Thoery of polarization enhancement in epitaxial batio3/srtio3 superlattices,” Applied Physics Letters, vol. 82, no. 10, pp. 1586-1588, 2003.CrossRefGoogle Scholar
  78. 78.
    J. Mantese, N. Schubring, A. L. Micheli, M. Mohammed, R. Naik, and G. W. Auner, “Slater model applied to polarization graded ferroelectrics,” Applied Physics Letters, vol. 71, no. 14, pp. 2047-2049, 1997.CrossRefGoogle Scholar
  79. 79.
    J. Mantese, N. Schubring, A. L. Micheli, M. Thompson, R. Naik, G. W. Auner, I. B. Misirlioglu, and S. P. Alpay, “Stress induced polarization-graded ferroelectrics,” Applied Physics Letters, vol. 81, p. 1068, 2002.CrossRefGoogle Scholar
  80. 80.
    W. Fellberg, J. Mantese, N. Schubring, and A. L. Micheli, “Origin of the ”up”, ”down” hysteresis offsets observed from polarization-graded ferroelectric materials,” Applied Physics Letters, vol. 78, no. 4, pp. 524-526, 2001.CrossRefGoogle Scholar
  81. 81.
    A. L. Roytburd and J. Slutsker, “Thermodynamics of polydomain ferroelectric bilayers and graded multilayers,” Applied Physics Letters, vol. 89, no. 4, p. 042-907, 2006.CrossRefGoogle Scholar
  82. 82.
    R. Slowak, S. Hoffmann, R. Liedtke, and R. Waser, “Functional Graded High-K (Ba1− xSrx )TiO3 Thin Films for Capacitor Structures with Low Temperature Coeffcient,” Integrated Ferroelectrics, vol. 24, p. 169, 1999.CrossRefGoogle Scholar
  83. 83.
    L. B. Freund, “Some elementary connections between curvature and mismatch strain in compositionally graded thin films,” Journal of the Mechanics and Physics of Solids, vol. 44, no. 5, pp. 723-736, 1996.CrossRefMathSciNetGoogle Scholar
  84. 84.
    . “The average spontaneous polarization P S and the in-plane self-strain are approximately 0.68 Coul /m 2 and 1 percent for PT and 0.23 Coul /m 2 and 0.1 percent for BT.”Google Scholar
  85. 85.
    G. H. Haertling, “Rainbow ceramic-a new type of ultra-high-displacement actuator,” American Ceramic Society Bulletin, vol. 73, no. 1, p. 93, 1994.Google Scholar
  86. 86.
    . G. H. Haertling, “Method for making monolithic prestressed ceramic devices,” 1995.Google Scholar
  87. 87.
    W. D. Nothwang, M. W. Cole, and R. W. Schwartz, “Stressed-biased actuators: Fatigue and lifetime,” Integrated Ferroelectrics, vol. 71, pp. 249-255, 2005.CrossRefGoogle Scholar
  88. 88.
    R. W. Schwartz, L. E. Cross, and Q. M. Wang, “Estimation of the effective d(31) coefficients of the piezoelectric layer in rainbow actuators,” Journal of the American Ceramic Society, vol. 84, no. 11, pp. 2563-2569, 2001.CrossRefGoogle Scholar
  89. 89.
    K. M. Mossi, G. V. Selby, and R. G. Bryant, “Thin-layer composite unimorph ferroelectric driver and sensor properties,” Materials Letters, vol. 35, no. 1-2, pp. 39-49, 1998.CrossRefGoogle Scholar
  90. 90.
    K. M. Mossi, R. G. Bryant, and P. Mane, “Piezoelectric composites as bender actuators,” Integrated Ferroelectrics, vol. 71, pp. 221-232, 2005.CrossRefGoogle Scholar
  91. 91.
    Z.-G. Ban, S. P. Alpay, and J. Mantese, “Fundamentals of graded ferroic materials and devices,” Physical Review B, vol. 67, p. 184-104, 2003.CrossRefGoogle Scholar
  92. 92.
    A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the laalo3/srtio3 heterointerface,” Nature, vol. 427, pp. 423-426, 2004.CrossRefGoogle Scholar
  93. 93.
    J. Mannhart and D. G. Schlom, “Semiconductor physics: The value of seeing nothing,” Nature, vol. 430, pp. 620-621, 2004.CrossRefGoogle Scholar
  94. 94.
    H. Y. Hwang, “Perovskites: Oxygen vacancies shine blue,” Nature Materials, vol. 4, pp. 803-804, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Debdeep Jena
    • 1
  • S. Pamir Alpay
    • 2
  • Joseph V. Mantese
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA
  2. 2.Materials Science and Engineering Program & Institute of Materials SciencesUniversity of ConnecticutStorrsUSA
  3. 3.United Technologies Research CenterEast HartfordUSA

Personalised recommendations