Polarization in Wide Bandgap Semiconductors and their Characterization by Scanning Probe Microscopy

  • Goutam Koley
  • M. V. S. Chandrashekhar
  • Chistopher I. Thomas
  • Michael G. Spencer

In this chapter, we discuss recent developments in the characterization of polarization doped wide bandgap semiconductor (WBS) heterojunctions with an emphasis on characterization by scanning probe microscopy (SPM). Wide bandgap semiconductors, such as SiC and GaN, have a wide variety of applications in electronic and optoelectronic devices [1–6]. The operation of devices made from these materials is dominated by the polarization properties of III-N and SiC semiconductor crystals. For example, polarization doped 2 dimensional electron gas (2DEG) channels in undoped GaN/AlGaN and SiC polytypic heterojunctions have been fabricated with current densites in excess of 1A/mm. Other effects, such as surface charge instability stemming from polarization, offer interesting potentials and challenges.While some of these effects may be studied using more conventional techniques such as currentvoltage (IV) and capacitance-voltage (CV) techniques (described in sections 2 and 3), others require probes capable of investigation on the nanometer scale. Transmission electron microscopy (TEM) can be used to investigate such polarizationinduced phenomena with atomic resolution, but involves destructive and laborious sample preparation.


Scanning Probe Microscopy Surface Barrier Wide Bandgap Semiconductor Sheet Charge Electrostatic Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. K. Mishra, P. Parikh, and Yi-Feng Yu, Proc. IEEE 90, 1022 2002.CrossRefGoogle Scholar
  2. 2.
    L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff, and J. R. Shealy, IEEE Trans. Electron Devices 48, 479 2001.CrossRefGoogle Scholar
  3. 3.
    S. Nakamura and G. Fasol, The blue laser diode, Springer-Verlag, Berlin, 1997.Google Scholar
  4. 4.
    M. Razeghi, Proc. IEEE 90, 1006 2002.CrossRefGoogle Scholar
  5. 5.
    Raghunathan, R. Alok, D. Baliga, B.J., IEEE Elec. Dev. Lett., 16, 226 1995CrossRefGoogle Scholar
  6. 6.
    Shenoy, J.N. Cooper, J.A., Jr Melloch, M.R., IEEE Elec. Dev. Lett, 18, 93 1997CrossRefGoogle Scholar
  7. 7.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 1982.CrossRefGoogle Scholar
  8. 8.
    E. T. Yu, S. L. Zuo, W. G. Bi, C. W. Tu, A. A. Allerman, and R. M. Biefeld, J. Vac. Sci. Technol. A 17, 2246 1999.CrossRefGoogle Scholar
  9. 9.
    K. Shiojima, J. M. Woodal, C. J. Eiting, P. A. Grudowski, and R. D. Dupuis, J. Vac. Sci. Technol. B 17, 2030 1999.CrossRefGoogle Scholar
  10. 10.
    S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Yu, J. Appl. Phys. 86, 5850 1999.CrossRefGoogle Scholar
  11. 11.
    M. Tanimoto and O. Vatel, J. Vac. Sci. Technol. B 14, 1547 1996.CrossRefGoogle Scholar
  12. 12.
    F. Robin, H. Jacobs, O. Homan, A. Stemmer, and W. B ächtold, Appl. Phys. Lett. 76, 2907 2000.CrossRefGoogle Scholar
  13. 13.
    G. Koley and M. G. Spencer, Appl. Phys. Lett. 78, 2873 2001.CrossRefGoogle Scholar
  14. 14.
    P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 72, 2247 1998.CrossRefGoogle Scholar
  15. 15.
    J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck, Appl. Phys. Lett. 81, 79 2002.CrossRefGoogle Scholar
  16. 16.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, 56, 1002 1997.CrossRefGoogle Scholar
  17. 17.
    O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 1998.CrossRefGoogle Scholar
  18. 18.
    O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 1999CrossRefGoogle Scholar
  19. 19.
    A. F. Wright, J. Appl. Phys. 82, 2833 1997.CrossRefGoogle Scholar
  20. 20.
    U. Starke, J. Schardt, J. Bernhardt, M. Franke, and K. Heinz, Phys. Rev. Lett., 82, 2107 1999CrossRefGoogle Scholar
  21. 21.
    C. Cheng, R. J. Needs and V Heine,J. Phys. C: Solid State Phys., 21, 1049 1988CrossRefGoogle Scholar
  22. 22.
    A. Qteish, Volker Heine, and R. J. Needs, Phys. Rev. B, 45, 65-34 1992Google Scholar
  23. 23.
    J.A. Powell, Herbert A. Will,J. Appl. Phys., 43, 1400 1972CrossRefGoogle Scholar
  24. 24.
    A. Fissel, J. Crystal Growth, 212, 438 2000CrossRefGoogle Scholar
  25. 25.
    H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 1986.CrossRefGoogle Scholar
  26. 26.
    S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, J. Appl. Phys. 87, 965 2000.CrossRefGoogle Scholar
  27. 27.
    R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, L. F. Eastman, O. Ambacher and M. Stutzmann, J. of Appl. Phys. 87, 3375 2000.CrossRefGoogle Scholar
  28. 28.
    B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. Denbaars, and J. S. Speck, J. Appl. Phys. 85, 6470 1999.CrossRefGoogle Scholar
  29. 29.
    M. J. Murphy, K. Chu, H. Wu, W. Yeo, W. J. Schaff, O. Ambacher, J. Smart, J. R. Shealy, L. F. Eastman, and T. J. Eustis, J. Vac. Sci. Technol. B 17, 1252 1999.CrossRefGoogle Scholar
  30. 30.
    O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys. 87, 334 2000.CrossRefGoogle Scholar
  31. 31.
    V. Ramachandran, R. M. Feenstra, W. L. Sarney, L. Salamanca-Riba, J. E. Northrup, L. T. Romano, and D. W. Greve, Appl. Phys. Lett. 75, 808 1999.CrossRefGoogle Scholar
  32. 32.
    S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, Appl. Phys. Lett. 66, 1249 1995.CrossRefGoogle Scholar
  33. 33.
    F. A. Ponce, MRS Bull. 22, 51 1997.Google Scholar
  34. 34.
    H. Amano, S. Kamiyama, I. Akasaki, Proc. IEEE 90, 1015 2002.CrossRefGoogle Scholar
  35. 35.
    Nils G. Weimann, L. F. Eastman, D. Doppalapudi, H. M, and T. D. Moustakas, Appl. Phys. Lett. 83, 36-56 1998.Google Scholar
  36. 36.
    Debdeep Jena, Arthur C. Gossard, and Umesh K. Mishra, Appl. Phys. Lett. 76, 1707 2000.CrossRefGoogle Scholar
  37. 37.
    J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Cleiman, L. N. Pfeiffer, and R. J. Molnar, Appl. Phys. Lett. 78, 1685 2001.CrossRefGoogle Scholar
  38. 38.
    X. G. Qiu, Y. Segawa, Q. K. Xue, Q. Z. Xue, and T. Sakurai, Appl. Phys. Lett. 77, 1316 2000.CrossRefGoogle Scholar
  39. 39.
    S. Nakamura, Semicond. Sci. Technol. 14, R27 1999.CrossRefGoogle Scholar
  40. 40.
    E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, J. Phys. Condens. Mater 13,7115 2001.CrossRefGoogle Scholar
  41. 41.
    S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, M. F. MacMillan, Appl. Phys. Lett, 83, 3171 2003CrossRefGoogle Scholar
  42. 42.
    A. Fissel, Physics Reports, 379, 149 2003CrossRefGoogle Scholar
  43. 43.
    Hiroyuki Matsunami, Tsunenobu Kimoto, Mat. Sci. Eng. R20, 125 1997Google Scholar
  44. 44.
    Glass, R. C.; Henshall, D.; Tsvetkov, V. F.; Carter, C. H., Jr., Phys. Stat. Sol. (B), Appl. Res., 202,149 1997CrossRefGoogle Scholar
  45. 45.
    Philip G. Neudeck, J. Anthony Powell, Andrew J. Trunek, Xianrong R. Huang, and Michael Dudley, Mat. Sci. For. 389-293, 311 2002Google Scholar
  46. 46.
    A. A. Lebedev, G. N. Mosina, I. P. Nikitina, N. S. Savkina, L. M. Sorokin and A. S. Tregubova, Tech. Phys. Lett., 27, 1052 2006CrossRefGoogle Scholar
  47. 47.
    H.S. Kong, J.T. Glass, R.F. Davis, Appl. Phys. Lett., 49, 1074 1986CrossRefGoogle Scholar
  48. 48.
    Tsunenobu Kimoto and Hiroyuki Matsunami, J. Appl. Phys., 78, 3132 1995CrossRefGoogle Scholar
  49. 49.
    David J. Larkin, Philip G. Neudeck, J. Anthony Powell, and Lawrence G. Matus, Appl. Phys. Lett., 65, 16-59 1994CrossRefGoogle Scholar
  50. 50.
    V. M. Polyakov and F. Schwierz, J. Appl. Phys., 98, 023709 2005CrossRefGoogle Scholar
  51. 51.
    MVS Chandrashekhar, C.I. Thomas, J. Lu, M.G. Spencer, Appl. Phys. Lett 91, 102727 2007Google Scholar
  52. 52.
    MVS Chandrashekhar, C.I. Thomas, J. Lu, M.G. Spencer, Appl. Phys. Lett 90, 173509 2007CrossRefGoogle Scholar
  53. 53.
    Nakashima, S.; Harima, H. Physica Stat. Sol. (A), Appl. Res, 162, 39 1997CrossRefGoogle Scholar
  54. 54.
    J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, and F. H. Longa, Z. C. Feng, I. T. Ferguson, J. Appl. Phys., 84, 6268 1998.Google Scholar
  55. 55.
    H. Kroemer, Wu-Yi Chien, J., S. Harris, D. D. Edwall, Appl. Phys. Lett., 36, 295 1980.CrossRefGoogle Scholar
  56. 56.
    Sghaier, N. Bluet, J.-M. Souifi, A. Guillot, G. Morvan, E. Brylinski, C., IEEE Trans. Elec. Dev., 50, 297 2003.CrossRefGoogle Scholar
  57. 57.
    Hideharu Matsuura, Masahiko Komeda, Sou Kagamihara, Hirofumi Iwata, Ryohei Ishihara, Tetsuo Hatakeyama, Takatoshi Watanabe, Kazutoshi Kojima, Takashi Shinohe, Kazuo Arai, J. Appl. Phys., 96, 2708 2004.CrossRefGoogle Scholar
  58. 58.
    R. Neuberger, G. Muller, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol. 185, 85 2001.CrossRefGoogle Scholar
  59. 59.
    J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 77, 250 2000.CrossRefGoogle Scholar
  60. 60.
    A. Vertiatchik, L. F. Eastman, W. J. Schaff, and T. Prunty, Electron. Letts. 38, 388 2002.CrossRefGoogle Scholar
  61. 61.
    X. Z. Dang, E. T. Yu, E. J. Piner, and B. T. McDermott, J. Appl. Phys. 90, 1357 2001.CrossRefGoogle Scholar
  62. 62.
    B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Phys. Rev. Lett. 63, 2669 1989.CrossRefGoogle Scholar
  63. 63.
    R. M. Nyffenegger, R. M. Penner, and R. Schierle, Appl. Phys. Lett. 71, 1878 1997.CrossRefGoogle Scholar
  64. 64.
    G. Koley and M. G. Spencer, J. Appl. Phys. 90, 337 2001.CrossRefGoogle Scholar
  65. 65.
    P. M. Bridger, Z. Z. Bandif, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 74, 3522 1999.CrossRefGoogle Scholar
  66. 66.
    G. Koley, H. Cha, C. I. Thomas, and M. G. Spencer, Appl. Phys. Lett. 81, 2282 2002.CrossRefGoogle Scholar
  67. 67.
    G, Koley, H. Cha, J. Hwang, W. J. Schaff, L. F. Eastman, and M. G. Spencer, J. Appl. Phys. 96,4253 2004.CrossRefGoogle Scholar
  68. 68.
    Z. Z. Bandi ć, P. M. Bridger, E. C. Piquette, and T. C. McGill, Solid-State Electron 44, 221 2000.CrossRefGoogle Scholar
  69. 69.
    L. Chernyak, A. Osinsky, and A. Schulte, Solid-State Electron 45, 1687 2001.CrossRefGoogle Scholar
  70. 70.
    B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, IEEE Electron Device Lett. 21, 268 2000.CrossRefGoogle Scholar
  71. 71.
    G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, IEEE Trans. Electron Devices 50, 886 2003.CrossRefGoogle Scholar
  72. 72.
    R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, IEEE Trans. Electron Devices 48, 560 2001.CrossRefGoogle Scholar
  73. 73.
    G. Koley, M. G. Spencer, and H. R. Bhangale, Appl. Phys. Lett. 79, 545 2001.CrossRefGoogle Scholar
  74. 74.
    G. Koley and M. G. Spencer, Appl. Phys. Lett. 86, 042107 2005.CrossRefGoogle Scholar
  75. 75.
    H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, J. Vac. Sci. Technol. B 21, 1844 2003.CrossRefGoogle Scholar
  76. 76.
    G. Koley and M. G. Spencer, Encyclop. NanoSci. Nanotech. 4, 327 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Goutam Koley
    • 1
  • M. V. S. Chandrashekhar
    • 2
  • Chistopher I. Thomas
    • 2
  • Michael G. Spencer
    • 2
  1. 1.Electrical and Computer Engineering DeptUniversity of South CarolinaColumbiaUSA
  2. 2.Electrical and Computer Engineering DeptCornell UniversityIthacaUSA

Personalised recommendations