Skip to main content

Local Polarization Effects in Nitride Heterostructures and Devices

  • Chapter
Polarization Effects in Semiconductors

As described in the accompanying chapters of this volume, spontaneous and piezoelectric polarization effects play an extremely prominent role in Group III-nitride semiconductors, influencing potential and charge distributions and carrier transport in a broad range of nitride-based semiconductor heterostructure devices. In this chapter we focus on the existence, nature, and consequences of inhomogeneities in polarization fields and polarization charge distributions that arise from factors such as defects, non-uniform strain fields, or nanoscale compositional and layer thickness variations in basic heterostructure materials, as well as from process-induced defects, non-uniform stress due to metallization or etching, and related issues in electronic device structures. Possibilities for the intentional introduction of polarization fields to enhance device performance are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Asbeck, C. P. Lee and M. F. Chang, “Piezoelectric effects in GaAs FETs and their role in orientation dependent device characteristics”, IEEE Trans. on Electron Devices 31, 1377 (1984).

    Article  Google Scholar 

  2. D. L. Smith. Strain-generated electric-fields in [111] growth axis strained-layer superlattices. Solid-State Commun. 57, 919-21 (1986).

    Article  Google Scholar 

  3. D. L. Smith and C. Mailhiot. Piezoelectric effects in strained-layer superlattices. J. Appl. Phys. 63,2717-9 (1988).

    Article  Google Scholar 

  4. T. F. Kuech, R. T. Collins, D. L. Smith, and C. Mailhiot. Field-effect transistor structure based on strain-induced polarization charges. J. Appl. Phys. 67, 2650-2 (1990).

    Article  Google Scholar 

  5. E. S. Snow, B. V. Shanabrook, and D. Gammon. Strain-induced 2-dimensional electron-gas in [111] growth-axis strained-layer structures. Appl. Phys. Lett. 56, 758-60 (1990).

    Article  Google Scholar 

  6. J. F. Nye. Physical Properties of Crystals: Their Representation by Tensors and Matrices(Oxford University Press, Oxford, 1998).

    Google Scholar 

  7. S. Strite, M. E. Lin, and H. Morkoç. Progress and prospects for GaN and the III-V-nitride semiconductors. Thin Solid Films 231, 197-210 (1993).

    Article  Google Scholar 

  8. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.: Condens. Matter 14, 3399-3434 (2002).

    Article  Google Scholar 

  9. M. A. Littlejohn, J. R. Hauser, and T. H. Glisson. Monte-Carlo calculation of velocity-field relationship for gallium nitride. Appl. Phys. Lett. 26, 625-7 (1975).

    Article  Google Scholar 

  10. A. D. Bykhovski, B. L. Gelmont, and M. S. Shur. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN, and GaN-InGaN superlattices. J. Appl. Phys. 81, 6332-8 (1997).

    Article  Google Scholar 

  11. G. D. O’Clock, Jr. and M. T. Duffy. Acoustic surface-wave properties of epitaxially grown aluminum nitride and gallium nitride on sapphire. Appl. Phys. Lett. 23, 55-6 (1973).

    Article  Google Scholar 

  12. A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan. Piezoresistive effect in wurtzite n-type GaN. Appl. Phys. Lett. 68, 818-9 (1996).

    Article  Google Scholar 

  13. J. G. Gualtieri, J. A. Kosinski, and A. Ballato. Piezoelectric materials for acoustic-wave applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 53-9 (1994).

    Article  Google Scholar 

  14. F. Bernardini, V. Fiorentini, and D. Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024-7 (1997).

    Article  Google Scholar 

  15. V. A. Savastenko and A. U. Sheleg. Study of elastic properties of gallium nitride. Phys. Status Solidi A 48, K135-9 (1978).

    Article  Google Scholar 

  16. Y. Takagi, M. Ahart, T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura. Brillouin scattering study in the GaN epitaxial layer. Physica B 219&220, 547-9 (1996).

    Article  Google Scholar 

  17. A. Polian, M. Grimsditch, and I. Grzegory. Elastic constants of gallium nitride. J. Appl. Phys. 79,3343-4 (1996).

    Article  Google Scholar 

  18. R. B. Schwarz, K. Khachaturyan, and E. R. Weber. Elastic moduli of gallium nitride. Appl. Phys. Lett. 70, 1122-4 (1997).

    Article  Google Scholar 

  19. C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer. Sound velocity of Al x Ga1− x N thin films obtained by surface acoustic-wave measurements. Appl. Phys. Lett. 72, 2400-2 (1998).

    Article  Google Scholar 

  20. K. Tsubouchi and N. Mikoshiba. Zero-temperature-coefficient SAW devices on AlN epitaxialfilms. IEEE Trans. Sonics Ultrason. SU-32, 634-44 (1985).

    Google Scholar 

  21. L. E. McNeil, M. Grimsditch, and R. H. French. Vibrational spectroscopy of aluminum nitride. J. Am. Ceram. Soc. 76, 1132-6 (1993).

    Article  Google Scholar 

  22. K. Kim, W. R. L. Lambrecht, and B. Segall. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310-26 (1996).

    Article  Google Scholar 

  23. A. F. Wright. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 82,2833-9 (1997).

    Article  Google Scholar 

  24. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett. 69, 4188-90 (1996).

    Article  Google Scholar 

  25. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars, and T. Sota. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Appl. Phys. Lett. 73, 2006-8 (1998).

    Article  Google Scholar 

  26. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada. Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect. Appl. Phys. Lett. 73, 1691-3 (1998).

    Article  Google Scholar 

  27. J. A. Garrido, J. L. Sanchez-Rojas, A. Jimenez, E. Munoz, F. Omnes, and P. Gibart. Polarization fields determination in AlGaN/GaN heterostructure field-effect transistors from charge control analysis. Appl. Phys. Lett. 75, 2407-9 (1999).

    Article  Google Scholar 

  28. P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies. High internal electric field in a graded-width InGaN/GaN quantum well: accurate determination by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 78, 1252-4 (2001).

    Article  Google Scholar 

  29. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim. Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells. Appl. Phys. Lett. 79, 1130-2 (2001).

    Article  Google Scholar 

  30. F. Renner, P. Kiesel, and G. H. Dohler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson. Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl. Phys. Lett. 81, 490-2 (2002).

    Article  Google Scholar 

  31. C. Y. Lai, T. M. Hsu, W.-H. Chang, and K.-U. Tseng. Direct measurement of piezoelectric field in In0.23 Ga0.77 N/GaN multiple quantum wells by electrotransmission spectroscopy. J. Appl. Phys. 91, 531-3 (2002).

    Article  Google Scholar 

  32. E. J. Miller, E. T. Yu, C. Poblenz, C. Elsass, and J. S. Speck. Direct measurement of the polarization charge in AlGaN/GaN heterostructures using capacitance-voltage carrier profiling. Appl. Phys. Lett. 80, 3551-3 (2002).

    Article  Google Scholar 

  33. H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck. Measurement of polarization charge and conduction band offset at InxGa1-xN/GaN heterojunction interfaces. Appl. Phys. Lett. 84, 4644-6 (2004).

    Article  Google Scholar 

  34. E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau. Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett. 71, 2794-6 (1997).

    Article  Google Scholar 

  35. R. People, K. W. Wecht, K. Alavi, and A. Y. Cho. Measurement of the conduction-band discontinuity of molecular-beam epitaxial grown In0.52 Al0.48 As/In0.53 Ga0.47 As n-n heterojunction by C-V profiling. Appl. Phys. Lett. 43, 118-20 (1983).

    Article  Google Scholar 

  36. H. Kroemer, Wu-Yi Chien, J. S. Harris, Jr., and D. D. Edwall. Measurement of isotype heterojunction barriers by C-V profiling. Appl. Phys. Lett. 36, 295-7 (1980).

    Article  Google Scholar 

  37. A. Bykhovski, R. Gaska, M. S. Shur, “Piezoelectric doping and elastic strain relaxation in AlGaN-GaN heterostructure field effect transistors”, Appl. Phys. Letts. 73, .3577-9 (1998).

    Article  Google Scholar 

  38. F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys”, Phys. Stat. Sol. (b) 240, 273-284 (2003)

    Article  Google Scholar 

  39. S. Einfeldt, Z.J. Reitmeier and R.F. Davis, “Strain of GaN Layers Grown Using 6H-SiC(0001) Substrates with Different Buffer Layers”, International J. of High Speed Electronics and Systems 14, 39 (2004).

    Article  Google Scholar 

  40. L. Hsu, W. Walukiewicz, “Effects of piezoelectric field on defect formation, charge transfer, and electron transport at GaN/AlxGa1-xN interfaces”, Appl. Phys. Letts., .73, 339-41 (1998).

    Article  Google Scholar 

  41. J.A. Van Vechten, J.D. Zook, R.D. Horning, B. Goldenberg, ”Defeating compensation in wide gap semiconductors by growing in H that is removed by low temperature de-ionizing radiation”, Japanese Journal of Applied Physics, Part 1, 31, 3662 (1992).

    Article  Google Scholar 

  42. E. T. Yu, X. Z. Dang, L. S. Yu, D. Qiao, P. M. Asbeck, and S.S. Lau, “Schottky Barrier Engineering in III-V Nitrides via the Piezoelectric Effect”, Appl. Phys. Lett., 73(13) 1880 (1998).

    Article  Google Scholar 

  43. . P. Asbeck, “Polarization Barriers for GaN-Based Devices”, MRS 2001, Symposium E.

    Google Scholar 

  44. . Liu, Y. Zhou, J. Zhu, K. M. Lau, and K. J. Chen, “AlGaN/GaN/InGaN/GaN DH-HEMTs With an InGaN Notch for Enhanced Carrier Confinement”, IEEE Electron Device Letters 27, 10, 2006.

    Google Scholar 

  45. T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN High Electron Mobility Transistors With InGaN Back-Barriers”, IEEE Electron Device Letters 27, 13, 2006.

    Article  Google Scholar 

  46. E. Kohn, I. Daumiller, M. Kunze, M. Neuburger, M. Seyboth, T. Jenkins, J. Sewell, J. Van Norstand, Y. Smorchkova, and U.K. Mishra, “Transient Characteristics of GaN-Based Heterostructure Field-Effect Transistors”, IEEE Trans. Microwave Theory and Techniques, 51, 634,2003.

    Article  Google Scholar 

  47. K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and Analysis of Deep Submicron StrainedSi N-MOSFET’s” IEEE Trans. on Electron Devices 47, 1406 (2000).

    Article  Google Scholar 

  48. P. Kirkby, P. Selway and L. Westbrook, “Photoelastic waveguides and their effect on stripegeometry GaAs/GaAlAs lasers”, J. Appl. Phys 50, 4567 (1979).

    Article  Google Scholar 

  49. . A. Conway, P. Asbeck and J. Moon,“The Effects of Processing Induced Stress on AlGaN/GaN HFET Characteristics,” Electronics Materials Conference, 2003.

    Google Scholar 

  50. . L. McCarthy, P. Kozodoy, S. DenBaars, M.Rodwell and U. Mishra, “First Demonstration of an AlGaN/GaN Heterojunction Bipolar Transistor”, Int. Symp. Comp. Semiconductors, 1998.

    Google Scholar 

  51. F. Ren, C. Abernathy, J. Van Hove, P. Chow, R. Hickman, J. Klaasen, R. Kopf, H. Cho, K. Jung, J. La Roche, R. Wilson, J. Han, R. Shul, A. Baca, S. Pearton, “300C GaN/AlGaN Heterojunction Bipolar Transistor”, Internet Jour. of Nitride Sem. Res. 3, 41 (1998).

    Google Scholar 

  52. P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang and C. Shi, “Enhancement of base conductivity via the piezoelectric effect in AlGaN/GaN HBTs”, Solid-State Electronics 44, 211 (2000).

    Article  Google Scholar 

  53. Th. Gessmann, J. W. Graff, Y.-L. Li, E. L. Waldron, and E. F. Schubert, “Ohmic contact technology in III nitrides using polarization effects of cap layers”, J. Applied Physics 92, 3740,2002.

    Article  Google Scholar 

  54. H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits”, Proc. IEEE 70, 13 (1982).

    Article  Google Scholar 

  55. Q. Lee, B. Agarwal, D. Mensa, R. Pullela, J. Guthrie, L. Samoska, M.J.W. Rodwell, “A >400 GHz fmax transferred-substrate heterojunction bipolar transistor IC technology. IEEE Electr. Dev.Letts., 19, 77 (1998).

    Article  Google Scholar 

  56. . A. Michel, D. Hanser, R.F. Davis, D. Qiao, S.S. Lau, L.S. Yu, W. Sun, P. Asbeck, “Growth and Characterization of Piezoelectrically Enhanced Acceptor-Type AlGaN/GaN Heterostructures”, 1999 Materials Research Society Fall Meeting, Boston, MA

    Google Scholar 

  57. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman. The role of dislocation scattering in n-type GaN films. Appl. Phys. Lett. 73, 821-3 (1998).

    Article  Google Scholar 

  58. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas. Scattering of electrons at threading dislocations in GaN. J. Appl. Phys. 83, 3656-9 (1998).

    Article  Google Scholar 

  59. J. W. Hsu, M. J. Manfra, D. V. Lang, K. W. Baldwin, L. N. Pfeiffer, and R. J. Molnar. Surface morphology and electronic properties of dislocations in AlGaN/GaN heterostructures. J. Electron. Mater. 30, 110-4 (2001)

    Article  Google Scholar 

  60. G. Koley, and M. G. Spencer. Scanning Kelvin probe microscopy characterization of dislocations in III-nitrides grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 78, 2873-5 (2001).

    Article  Google Scholar 

  61. B. S. Simpkins, D. M. Schaadt, E. T. Yu, and R. J. Molnar. Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy. J. Appl. Phys. 91,9924-9 (2002).

    Article  Google Scholar 

  62. J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar. Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 78, 1685-7 (2001).

    Article  Google Scholar 

  63. E. J. Miller, D. M. Schaadt, E. T. Yu, C. Poblenz, C. Elsass, and J. S. Speck. Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope. J. Appl. Phys. 91, 9821-6 (2002).

    Article  Google Scholar 

  64. E. J. Miller, D. M. Schaadt, E. T. Yu, X. L. Sun, L. J. Brillson, P. Waltereit, and J. S. Speck. Origin and microscopic mechanism for suppression of leakage currents in Schottky contacts to GaN grown by molecular-beam epitaxy. J. Appl. Phys. 94, 7611-5 (2003).

    Article  Google Scholar 

  65. C. C. Shi, P. M. Asbeck, and E. T. Yu. Piezoelectric polarization associated with dislocations in wurtzite GaN. Appl. Phys. Lett. 74, 573-5 (1999).

    Article  Google Scholar 

  66. J. P. Hirth and J. Lothe. Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  67. F. A. Ponce, D. P. Bour, W. Gotz, and P. J. Wright. Spatial distribution of the luminescence in GaN thin films. Appl. Phys. Lett. 68, 57-9 (1996).

    Article  Google Scholar 

  68. E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. Denbaars, and J. S. Speck. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 82, 5472-9 (1997).

    Article  Google Scholar 

  69. A. F. Wright and U. Grossner. The effect of doping and growth stoichiometry on the core structure of a threading edge dislocation in GaN. Appl. Phys. Lett. 73, 2751-3 (1998).

    Article  Google Scholar 

  70. J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, T. Frauenheim, S. Oberg, and P. R. Briddon. Deep acceptors trapped at threading-edge dislocations in GaN. Phys. Rev. B 58,12571-4 (1998).

    Article  Google Scholar 

  71. K. Leung, A. F. Wright, and E. B. Stechel. Charge accumulation at a threading edge dislocation in gallium nitride. Appl. Phys. Lett. 74, 2495-7 (1999).

    Article  Google Scholar 

  72. S. J. Rosner, E. C. Carr, M. J. Ludowise, G. G. Girolami, and H. I. Erikson. Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. 70, 420-2 (1997).

    Article  Google Scholar 

  73. C. Youtsey, L. T. Romano, and I. Adesida. Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations. Appl. Phys. Lett. 73, 797-9 (1998).

    Article  Google Scholar 

  74. P. M. Bridger, Z. Z. Bandic, E. C. Piquette, and T. C. McGill. Correlation between the surface defect distribution and minority carrier transport properties in GaN. Appl. Phys. Lett. 73, 3438-40 (1998).

    Article  Google Scholar 

  75. B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. Denbaars, and J. S. Speck. Dislocation mediated surface morphology of GaN. J. Appl. Phys. 85, 6470-6 (1999).

    Article  Google Scholar 

  76. D. M. Schaadt, E. J. Miller, E. T. Yu, and J. M. Redwing. Lateral variations in threshold voltage of an Al x Ga1− x N/GaN heterostructure field-effect transistor. Appl. Phys. Lett. 78, 88-90 (2001).

    Article  Google Scholar 

  77. K. V. Smith, E. T. Yu, J. M. Redwing, and K. S. Boutros. Scanning capacitance microscopy of AlGaN/GaN heterostructure field-effect transistor epitaxial layer structures. Appl. Phys. Lett. 75,2250-2 (1999).

    Article  Google Scholar 

  78. K. V. Smith, X. Z. Dang, E. T. Yu, and J. M. Redwing. Charging effects in AlGaN/GaN heterostructures probed using scanning capacitance microscopy. J. Vac. Sci. Technol. B 18, 2304-8 (2000).

    Article  Google Scholar 

  79. K. V. Smith, E. T. Yu, C. Elsass, B. Heying, and J. S. Speck. Localized variations in electronic structure of AlGaN/GaN heterostructures grown by molecular-beam epitaxy. Appl. Phys. Lett. 79,2749-51 (2001).

    Article  Google Scholar 

  80. D. M. Schaadt, E. J. Miller, E. T. Yu, and J. M. Redwing, “Quantitative analysis of nanoscale electronic properties in an Al x Ga1− x N/GaN heterostructure field-effect transistor structure,” J. Vac. Sci. Technol. B 19, 1671-4 (2001).

    Article  Google Scholar 

  81. D. M. Schaadt and E. T. Yu. Scanning capacitance spectroscopy of an AlGaN/GaN heterostructure field-effect transistor: analysis of probe tip effects. J. Vac. Sci. Technol. B 20, 1671-6 (2002).

    Article  Google Scholar 

  82. E. T. Yu, P. M. Asbeck, S. S. Lau, and G. J. Sullivan. Piezoelectric Effects in AlGaN/GaN Heterostructure Field-Effect Transistors. Electrochemical Society Proceedings 98-2, 468-78 (1998).

    Google Scholar 

  83. X. Zhou, E. T. Yu, D. Florescu, J. C. Ramer, D. S. Lee, and E. A. Armour. Observation of subsurface monolayer thickness fluctuations in InGaN/GaN quantum wells by scanning capacitance microscopy and spectroscopy. Appl. Phys. Lett. 85, 407-9 (2004).

    Article  Google Scholar 

  84. X. Zhou, E. T. Yu, D. I. Florescu, J. C. Ramer, D. S. Lee, S. M. Ting, and E. A. Armour. Observation of In concentration variations in InGaN/GaN quantum-well heterostructures by scanning capacitance microscopy. Appl. Phys. Lett. 86, 202113-1-3 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yu, E.T., Asbeck, P.M. (2008). Local Polarization Effects in Nitride Heterostructures and Devices. In: Wood, C., Jena, D. (eds) Polarization Effects in Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68319-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68319-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36831-3

  • Online ISBN: 978-0-387-68319-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics