Advertisement

Polarization Effects on Low-Field Transport & Mobility in III-V Nitride HEMTs

  • Debdeep Jena

III-V Nitride heterostructures are very attractive for high-power RF power ampli- fiers, among a host of other applications. The large bandgap of GaN, in addition to a number of intrinsic material properties that include high electron saturation velocity, high breakdown fields, and high thermal conductivity make the material system especially suitable for mm-wave high-electron mobility transistors (HEMTs).

Keywords

Carrier Density Optical Phonon Acoustic Phonon Barrier Thickness Polar Optical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. K. Mishra, P. Parikh, and Y. F. Wu Proceedings of the IEEE., vol. 90, p. 1022, 2002.CrossRefGoogle Scholar
  2. 2.
    Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. DenBaars, and U. K. Mishra IEEE Electron Device Lett., vol. 19, p. 50, 1998.CrossRefGoogle Scholar
  3. 3.
    J. R. Shealy, V. Kaper, V. Tilak, T. Prunty, J. A. Smart, B. M. Green, and L. F. Eastman J. Phys.: Condens. Matter, vol. 14, p. 3499, 2002.CrossRefGoogle Scholar
  4. 4.
    A. Rizzi, R. Lantier, F. Monti, H. L üth, F. D. Sala, A. Di Carlo, and P. Lugli J. Vac. Sci. Tech. B, vol. 17, p. 1674, 1999.CrossRefGoogle Scholar
  5. 5.
    J. H. Davies, The Physics of Low-Dimensional Semiconductors. Cambridge, United Kingdom: Cambridge University Press, 1st ed., 1998Google Scholar
  6. 6.
    J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra Appl. Phys. Lett., vol. 77, p. 250, 2000.CrossRefGoogle Scholar
  7. 7.
    E. S. Snow, B. V. Shanabrook, and D. Gammon Appl. Phys. Lett., vol. 56, p. 758, 1990.CrossRefGoogle Scholar
  8. 8.
    G. L. Snider 1DPoisson, http://www.nd.edu/gsnider/.
  9. 9.
    M. J. Manfra and C. R. Elsass personal communication, 2002.Google Scholar
  10. 10.
    M. J. Manfra, K. W. Baldwin, A. M. Sergent, K. W. West, R. J. Molnar, and J. Caissie Appl. Phys. Lett., vol. 85, p. 5394, 2004.CrossRefGoogle Scholar
  11. 11.
    C. Skierbiszewski, K. Dybko, W. Knap, J. Lusakowski, Z. R. Wasilewski, Z. R. Maude, T. Suski, and S. Porowski Appl. Phys. Lett., vol. 86, p. 102106, 2005.CrossRefGoogle Scholar
  12. 12.
    M. J. Manfra, N. G. Weimann, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, S. Syed, H. L. Stormer, W. Pan, D. V. Lang, S. N. G. Chu, G. Kowach, A. M. Sergent, J. Caissie, K. M. Molvar, L. J. Mahoney, and R. J. Molnar J. Appl. Phys., vol. 92, p. 338, 2002.CrossRefGoogle Scholar
  13. 13.
    I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra J. Appl. Phys., vol. 86, p. 4520, 1999.CrossRefGoogle Scholar
  14. 14.
    E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. A. Khan, M. S. Shur, R. Gaska, and D. Maude Appl. Phys. Lett., vol. 77, p. 2551, 2000.CrossRefGoogle Scholar
  15. 15.
    C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, K. Maranowski, J. P. Ibbetson, S. Keller, P. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck Appl. Phys. Lett., vol. 74, p. 3528, 1999.CrossRefGoogle Scholar
  16. 16.
    T. Wang, Y. Ohno, M. Lachab, D. Nakagawa, T. Shirahama, S. Sakai, and H. Ohno Appl. Phys. Lett., vol. 74, p. 3531, 1999.CrossRefGoogle Scholar
  17. 17.
    R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur Appl. Phys. Lett., vol. 72, p. 707, 1998.CrossRefGoogle Scholar
  18. 18.
    D. Jena Unpublished.Google Scholar
  19. 19.
    I. P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra J. Appl. Phys., vol. 90, p. 5196, 2001.CrossRefGoogle Scholar
  20. 20.
    L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin Appl. Phys. Lett., vol. 55, p. 1888, 1989.CrossRefGoogle Scholar
  21. 21.
    T. Ando, A. B. Fowler, and F. Stern Rev. Mod. Phy., vol. 54, p. 437, 1982.CrossRefGoogle Scholar
  22. 22.
    W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos Phys. Rev. B, vol. 30, p. 4571, 1984.CrossRefGoogle Scholar
  23. 23.
    W. Knap, S. Contreras, H. Alause, C. Skierbiszewski, J. Camassel, M. Dyakonov, J. L. Robert, J. Yang, Q. Chen, M. A. Khan, M. L. Sadowski, S. Huant, F. H. Yang, M. Goian, J. Leotin, and M. S. Shur Appl. Phys. Lett., vol. 70, p. 2123, 1997.CrossRefGoogle Scholar
  24. 24.
    E. archive New Semiconductor Materials Characteristics and Properties http://www.ioffe.rssi.ru/SVA/NSM/. 25. K. Seeger, Semiconductor Physics, An Introduction. Berlin: Springer Verlag, 6th ed., 1999.
  25. 26.
    B. L. Gelmont, M. Shur, and M. Stroscio J. Appl. Phys., vol. 77, p. 657, 1995.CrossRefGoogle Scholar
  26. 27.
    G. D. Bastard, Wave-Mechanics applied to Semiconductor Heterostructures. Les Ulis Cedex, France: Les Editions de Physique, 1st ed.Google Scholar
  27. 28.
    B. K. Ridley physica status solidi, vol. 176, p. 359, 1999.CrossRefGoogle Scholar
  28. 29.
    L. Hsu and W. Walukiewicz J. Appl. Phys., vol. 89, p. 1783, 2001.CrossRefGoogle Scholar
  29. 30.
    D. K. Ferry and S. M. Goodnick, Transport in Nanostructures. Cambridge, UK: Cambridge University Press, 1st ed., 1999.Google Scholar
  30. 31.
    Y. Zhang and J. Singh J. Appl. Phys., vol. 85, p. 587, 1999.CrossRefGoogle Scholar
  31. 32.
    A. Gold Phys. Rev. B, vol. 35, p. 723, 1987.CrossRefGoogle Scholar
  32. 33.
    N. W. Ashcroft and D. N. Mermin, Solid State Physics. Philadelphia: Saunders College, 1st ed., 1976.Google Scholar
  33. 34.
    O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann J. Appl. Phys., vol. 87, p. 334, 2000.CrossRefGoogle Scholar
  34. 35.
    R. Stratton J. Phys. Chem. Solids, vol. 23, p. 1011, 1962.CrossRefGoogle Scholar
  35. 36.
    B. K. Ridley, Quantum Processes in Semiconductors. Great Clanderon St. Oxford: Clanderon Press, 4th ed., 1999.Google Scholar
  36. 37.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt Phys. Rev. B, vol. 56, p. R10 024, 1997.CrossRefGoogle Scholar
  37. 38.
    W. Zhano and D. Jena J. Appl. Phys., vol. 96, p. 2095, 2004.CrossRefGoogle Scholar
  38. 39.
    D. C. Look and J. R. Sizelove Phys. Rev. Lett., vol. 82, p. 1237, 1999.CrossRefGoogle Scholar
  39. 40.
    D. Zhao and K. J. Kuhn IEEE Trans. Electron Devices, vol. 38, p. 1520, 1991.Google Scholar
  40. 41.
    J. S. Speck and S. J. Rosner Physica B, vol. 273-274, p. 24, 1999.CrossRefGoogle Scholar
  41. 42.
    K. Leung, A. F. Wright, and E. B. Stechel Appl. Phys. Lett., vol. 74, p. 2495, 1999.CrossRefGoogle Scholar
  42. 43.
    J. Elsner, R. Jones, P. K. Sitch, V. D. Porezag, M. Elstner, T. Frauenheim, M. I. Heggie, S. O berg, and P. R. Briddon Phys. Rev. Lett., vol. 79, p. 3672, 1997.CrossRefGoogle Scholar
  43. 44.
    W. T. Read Philos. Mag., vol. 45, p. 775, 1954.MATHGoogle Scholar
  44. 45.
    P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. Brazel, J. P. Ibbetson, V. Narayanamurti, S. P. DenBaars, and J. S. Speck Appl. Phys. Lett., vol. 72, p. 2247, 1998.CrossRefGoogle Scholar
  45. 46.
    E. G. Brazel, M. A. Chin, and V. Narayanamurti Appl. Phys. Lett., vol. 74, p. 2367, 1999.CrossRefGoogle Scholar
  46. 47.
    J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleinman, L. N. Pfeiffer, and R. J. Molnar Appl. Phys. Lett., vol. 78, p. 1685, 2001.CrossRefGoogle Scholar
  47. 48.
    P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra Appl. Phys. Lett., vol. 73, p. 975, 1998.CrossRefGoogle Scholar
  48. 49.
    D. M. Schaadt, E. J. Miller, E. T. Yu, and J. M. Redwing Appl. Phys. Lett., vol. 78, p. 88, 2001.CrossRefGoogle Scholar
  49. 50.
    A. F. Wright and J. Furthm üller Appl. Phys. Lett., vol. 72, p. 3467, 1998.CrossRefGoogle Scholar
  50. 51.
    A. F. Wright and U. Grossner Appl. Phys. Lett., vol. 73, p. 2751, 1998.CrossRefGoogle Scholar
  51. 52.
    J. S. Koehler Phys. Rev., vol. 75, p. 106, 1949.MATHCrossRefGoogle Scholar
  52. 53.
    J. K. Mackenzie and E. H. Sondheimer Phys. Rev., vol. 82, p. 264, 1950.CrossRefGoogle Scholar
  53. 54.
    R. Landauer Phys. Rev., vol. 82, p. 520, 1951.CrossRefMathSciNetGoogle Scholar
  54. 55.
    D. L. Dexter Phys. Rev., vol. 86, p. 770, 1952.MATHCrossRefGoogle Scholar
  55. 56.
    J. Bardeen and W. Shockley Phys. Rev., vol. 80, p. 72, 1950.MATHCrossRefMathSciNetGoogle Scholar
  56. 57.
    S. L. Chuang Phys. Rev. B, vol. 43, p. 9649, 1991.CrossRefGoogle Scholar
  57. 58.
    C. Shi, P. M. Asbeck, and E. T. Yu Appl. Phys. Lett., vol. 74, p. 573, 1999.CrossRefGoogle Scholar
  58. 59.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan J. Appl. Phys., vol. 89, p. 8815, 2001.CrossRefGoogle Scholar
  59. 60.
    L. Hsu and W. Walukiewicz J. Appl. Phys., vol. 89, p. 1783, 2001.CrossRefGoogle Scholar
  60. 61.
    L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra IEEE Electron. Dev. Lett., vol. 22, p. 457, 2001.CrossRefGoogle Scholar
  61. 62.
    P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. Ploog Nature, vol. 406, p. 865, 2000.CrossRefGoogle Scholar
  62. 63.
    S. data supplied by Chris Elsass (UCSB)Google Scholar
  63. 64.
    C. M. Wolfe, N. Holonyak Jr., and G. E. Stillman, Physical Properties of Semiconductors. Englewood Cliffs, New Jersey: Prentice Hall, 1st ed., 1989.Google Scholar
  64. 65.
    M. Wraback, H. Shen, J. C. Carrano, T. Li, J. C. Campbell, M. J. Schurman, and I. T. Ferguson Appl. Phys. Lett., vol. 76, p. 1155, 2000.CrossRefGoogle Scholar
  65. 66.
    T.-H. Yu and K. F. Brennan J. Appl. Phys., vol. 91, p. 3730, 2002.CrossRefGoogle Scholar
  66. 67.
    U. Bhapkar and M. S. Shur J. Appl. Phys., vol. 82, p. 1649, 1997.CrossRefGoogle Scholar
  67. 68.
    W. B. Joyce and R. W. Dixon Appl. Phys. Lett., vol. 31, p. 354, 1977.CrossRefGoogle Scholar
  68. 69.
    C. Hamaguchi Basic Semiconductor Physics, p. 280, 2001.Google Scholar
  69. 70.
    J. Ziman Theory of Solids, Cambridge University Press, 1972.Google Scholar
  70. 71.
    D. K. Ferry, Semiconductor Transport. London: Taylor & Francis, 1st ed., 2000.Google Scholar
  71. 72.
    B. M. Askerov, Electron Transport Phenomena in Semiconductors. Singapore: World Scientific, 1st ed., 1994.Google Scholar
  72. 73.
    H. Kroemer, Quantum Mechanics for Engineering, Materials Science, and Applied Physics. Englewoods Cliff, New Jersey: Prentice Hall, 1st ed., 1994.Google Scholar
  73. 74.
    G. D. Mahan, Many Particle Physics. New York: Kluwer Academic/Plenum Publishers, 3rd ed., 2000.Google Scholar
  74. 75.
    S. Bloom, G. Harbeke, E. Meier, and I. B. Ortenburger Phys. Stat. Solidi, vol. 66, p. 161, 1974.CrossRefGoogle Scholar
  75. 76.
    A. F. Brana, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Munoz, and F. Omnes J. Appl. Phys., vol. 88, p. 932, 2000.CrossRefGoogle Scholar
  76. 77.
    T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D’Astuto, T. Suski, I. Grzegory, and M. Leszczynski Phys. Rev. Lett., vol. 86, p. 906, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Debdeep Jena
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations