Lateral and Vertical Charge Transport in Polar Nitride Heterostructures

  • Yuh-Renn Wu
  • Madhusudan Singh
  • Jasprit Singh

Information processing devices driving the modern technology revolution are based on materials such as semiconductors, ferroelectrics, piezoelectrics, ferromagnetics, etc. In thesematerials there is a strong change in one or more physical property in response to an external perturbation. Semiconductors where there is a strong change in electrical conductivity or optical properties are the most important materials in today’s technology. However, most semiconductors don’t have strong response to external stress or magnetic fields or temperature changes. Also most traditional semiconductors breakdown in the presence of strong electrical fields and cannot be used for very high power generation. The realization of new devices based on GaN, InN and AlN has increased the capabilities of the semiconductor family allowing not only traditional devices to operate better but also allowing new devices to be conceived. In this chapter we will focus on transport and charge control devices based on nitrides.


Gate Voltage Spontaneous Polarization Gate Insulator Schottky Barrier Height Gate Length 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Aktas, Z. F. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T. Jenkins, L. Kehias, and H. Morkoç. Microwave performance of AlGaN/GaN inverted MODFET’s. IEEE Electron Device Lett., 18(6):293-295, June 1997.CrossRefGoogle Scholar
  2. 2.
    O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys., 87(1):334-344, January 2000.CrossRefGoogle Scholar
  3. 3.
    O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stuzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.: Condens. Matter, 14:3399-3434, 2002.CrossRefGoogle Scholar
  4. 4.
    O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murohy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck. Twodimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys., 85(6):3222-3233, March 1999.CrossRefGoogle Scholar
  5. 5.
    E. Anastassakis and M. Siakavellas. Elastic properties of textured diamond and silicon. J. Appl. Phys., 90(1):144-152, July 2001.CrossRefGoogle Scholar
  6. 6.
    L. Ardaravicius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L. F. Eastman, J. R. Shealy, and A. Vertiatchikh. Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. Lett., 83(19):4038-4040, 2003.CrossRefGoogle Scholar
  7. 7.
    K. Balachander, S. Arulkumaran, T. Egawa, Y. Sano, and K. Baskar. Demonstration of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with silicon-oxynitride as the gate insulator. Materials Sci. Engg. B, 119(1):36-40, May 2005.Google Scholar
  8. 8.
    K. Balachander, S. Arulkumaran, H. Ishikawa, K. Baskar, and T. Egawal. Studies on electron beam evaporated ZrO2 /AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. Physica Status Solidi A - Applied Research, 202(2):R16-R18, January 2005.CrossRefGoogle Scholar
  9. 9.
    J. M. Barker, D. K. Ferry, S. M. Goodnick, D. D. Koleske, A. Allerman, and R. J. Shul. High field transport in GaN/AlGaN heterostructures. J. Vac. Sci. Technol. B, 22(4):2045-2050, 2004.CrossRefGoogle Scholar
  10. 10.
    R. G. Beck, M. A. Eriksson, M. A. Topinka, and R. M. Westervelt. GaAs/AlGaAs selfsensing cantilevers for low temperature scanning probe microscopy. Appl. Phys. Lett., 73(8):1149-1151, 1998.CrossRefGoogle Scholar
  11. 11.
    Fabio Bernardini, Vicenzo Fiorentini and David Vanderbilt. Spontaneous polarization and piezoelectric constant of III-V nitrides. Phys. Rev. B, 56(16):10024-10027, October 1997.CrossRefGoogle Scholar
  12. 12.
    J. Bernat, D. Gregusova, G. Heidelberger, A. Fox, M. Marso, H. Luth, and P. Kordos. SiO2/AlGaN/GaN MOSHFET with 0.7 µn gate-length and fmax / fT of 40/24 GHz. Electronics Lett., 41(11):667-668, May 2005.CrossRefGoogle Scholar
  13. 13.
    Y.Z. Chiou, S.J. Chang, Y.K. Su, C.K. Wang, T.K. Lin, and Bohr-Ran Huang. Photo-CVD SiO2 layers on AlGaN and AlGaN-GaN MOSHFET. IEEE Transactions on Electron Devices, 50:1748-1752, 2003.CrossRefGoogle Scholar
  14. 14.
    S. L. Chuang and C. S. Chang. k·p method for strained wurtzite semiconductors. Physics Review B, 54:2491-2504, 1996.CrossRefGoogle Scholar
  15. 15.
    . S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau. 85nm Gate Length Enhancement and Depletion mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications. IEDM, page Sec 32.1, 2005.Google Scholar
  16. 16.
    R. Dimitrov, L. Wittmer, H. Felsl, A. Mitchell, O. Ambacher, and M. Stutzmann. Carrier Confinement in AlGaN/GaN Heterostructures Grown by Plasma Induced Molecular Beam Epitaxy. Phys. Status Solidi A, 168:R7-R8, 1998.CrossRefGoogle Scholar
  17. 17.
    R. Droopad, Z. Yu, J. Ramdani, L. Hilt, J. Copturless, C. Overgaard, J. L. Edwards, J. Finder, K. Eisenbeiser, and W. Ooms. Development of high dielectric constant epitaxial oxides on silicon by molecular beam epitaxy. Mater. Sci. Engineering B, 87(3):292-296, December 2001.CrossRefGoogle Scholar
  18. 18.
    Ravi Droopad, Zhiyi Yu, Jamal Ramdani, Lyndee Hilt, Jay Copturless, Corey Overgaard, John L. Edwards, Jeff Finder, Kurt Eisenbeiser, Jun Wang, V. Kaushik, B. Y. Ngyuen, and Bill Ooms. Epitaxial oxides on silicon grown by molecular beam epitaxy. J. Cryst. Growth, 227-228:936-947, July 2001.CrossRefGoogle Scholar
  19. 19.
    L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, Hyungtak Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff, and J. R. Shealy. Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans. Electron Devices, 48(3):479-485, Mar. 2001.CrossRefGoogle Scholar
  20. 20.
    A. K. Fung, L. Cong, J. D. Albrecht, M. I. Nathan, and P. P. Ruden. Linear in-plane uniaxial stress effects on the device characteristics of AlGaAs/GaAs modulation doped field effect transistors. J. Appl. Phys., 81:502-505, 1997.CrossRefGoogle Scholar
  21. 21.
    Sandip Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. J. Ploog. Electronic band structure of wurtzite gan under biaxial strain in the m plane investigated with photoreflectance spectroscopy. Physical Review B, 65:075202, 2002.CrossRefGoogle Scholar
  22. 22.
    Venkatraman Gopalan and Mool C. Gupta. Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence. Appl. Phys. Lett., 68(7):888-890, February 1996.CrossRefGoogle Scholar
  23. 23.
    . A. Govindan, A. K. Tripathi and T. C. and Goel. Pyroelectric and piezoelectric studies on BaTiO3 : silica glass composites. In Proceedings., 7th International Symposium on 25-27 Sept. 1991, pages 524-529, September 1991.Google Scholar
  24. 24.
    . Paul R. Gray and Robert G. Meyer. Analysis and Design of Analog Integrated Circuits. John Wiley & Sons, 1993.Google Scholar
  25. 25.
    J. G. Gualtieri, J. A. Kosinski, and A. Ballato. Piezoelectric materials for acoustic wave applications. IEEE Trans. Ultrason., Ferroelect. Freq. Contr., 41(1):53-59, January 1994.CrossRefGoogle Scholar
  26. 26.
    R. N. Hall. Electron-hole recombination in Germanium. Phys. Rev., 87:387, 1952.CrossRefGoogle Scholar
  27. 27.
    P. J. Hansen, L. Shen, Y. Wu, A. Stonas, Y. Terao, S. Heikman, D. Buttari, T. R. Taylor, S. P. DenBaars, U. K. Mishra, R. A. York, and J. S. Speck. AlGaN/GaN metal-oxlde-semiconductor heterostructure field-effect transistors using barium strontium titanate. Journal of Vacuum Science & Technology B, 22(5):2479-2485, 2004.CrossRefGoogle Scholar
  28. 28.
    Peter Hansen, Y. Wu, L. Shen, S. Heikman, S. P. Denbaars, R. A. York, U. K. Mishra, and J. S. Speck. Oxide / GaN Integration. In Center for Advanced Nitride Electronics CANE / MURI REVIEW. University of California, Santa Barbara, May 2003.Google Scholar
  29. 29.
    D. C. Herbert, P. A. Childs, R. A. Abram, G. C. Crow, and M. Walmsley. Monte carlo simulations of high-speed insb-inalsb fets. Electron Devices, IEEE Transactions on, 52(6):1072-1078,2005.CrossRefGoogle Scholar
  30. 30.
    . M. Higashiwaki, T. Matsui, and T. Mimura. 30-nm-gate AlGaN/GaN MIS-HFETs with 180 GHz fT . In 2006 Device Research conference, 2006.Google Scholar
  31. 31.
    M. Higashiwaki, T. Matsui, and T. Mimura. AlGaN/GaN MIS-HFETs With fT of 163 GHz Using Cat-CVD SiN Gate-Insulating and Passivation Layers. IEEE Electron Device Lett., 27(1):16-18, January 2006.CrossRefGoogle Scholar
  32. 32.
    Masataka Higashiwaki and Toshiaki Matsui. AlGaN/GaN Heterostructure Field-Effect Transistors with Current Gain Cut-off Frequency of 152 GHz on Sapphire Substrates. Jpn. J. Appl. Phys., 44(16):475-478, April 2005.CrossRefGoogle Scholar
  33. 33.
    Carlo Jacobini and Lino Reggiani. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55(3):645-705,1983.Google Scholar
  34. 34.
    B. Jogai. Free electron distribution in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys., 91(6):3721-3729, March 2002.CrossRefGoogle Scholar
  35. 35.
    J. R. Juang, Tsai Y. Huang, Tse M. Chen, Ming G. Lin, Gil H. Kim, Y. Lee, C. T. iang, D. R. Hang, Y. F. Chen, and Jen I. Chyi. Transport in a gated Al0.18 Ga0.82 N/GaN electron system. J. Appl. Phys., 94(5):3181-3184, 2003.CrossRefGoogle Scholar
  36. 36.
    Javier Junquera and Phulippe Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 422:506-509, April 2003.CrossRefGoogle Scholar
  37. 37.
    D. Kikuta, R. Takaki, J. Matsuda, M. Okada, X. Wei, J. P. Ao, and Y. Ohno. Gate leakage reduction mechanism of AlGaN/GaN MIS-HFETs. Jpn. J. Appl. Phys. Part 1, 44(4B):2479-2482, April 2005.Google Scholar
  38. 38.
    Sungwon Kim, Venkatraman Gopalan, and Alexei Gruverman. Coercive fields in fer- roelectrics: A case study in lithium niobate and lithium tantalate. Appl. Phys. Lett., 80(15):2740-2742, April 2002.CrossRefGoogle Scholar
  39. 39.
    Mitsuteru Kimura and Katsuhisa Toshima. Thermistor-like pn junction temperature-sensor with variable sensitivity and its combination with a micro-air-bridge heater. Sensors and Actuators A: Physical, 108:239-243, 2003.CrossRefGoogle Scholar
  40. 40.
    R. Y. Korotkov, J. M. Gregie, and B. W. Wessels. Codoping of wide gap epitaxial III-Nitride semiconductors. Opto-Elec. Rev., 10(4):243-249, 2002.Google Scholar
  41. 41.
    H. Kosina and S. Selberherr. A hybrid device simulator that combines Monte Carlo and drift-diffusion analysis. IEEE Trans. Computer-Aided Design, 13(2):201-210, Feb. 1994.CrossRefGoogle Scholar
  42. 42.
    Peter Kozodoy, Huili Xing, Steven P. Denbaars, Umesh K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel. Heavy doping effects in Mg-doped GaN. J. Appl. Phys., 87(4):1832-1835, February 2000.CrossRefGoogle Scholar
  43. 43.
    V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, Asif M. Khan, and I. Adesida. AlGaN/GaN HEMTs on SiC with fT of over 120 GHz. IEEE Electron Device Lett., 23(8):455-457, August 2002.CrossRefGoogle Scholar
  44. 44.
    J. Kushibiki, I. Takanaga, S. Komatsuzaki, and T. Ujiie. Chemical composition dependences of the acoustical physical contants of LiNbO3 single crystal. J. Appl. Phys., 91(10):6341-6349, May 2002.Google Scholar
  45. 45.
    Z. Li, S. K. Chan, M. H. Grimsditch, and E. S. Zouboulis. The elastic and electromechanical properties of tetragonal BaTiO3 single crystals. J. Appl. Phys., 70(12):7327-7332, December 1991.CrossRefGoogle Scholar
  46. 46.
    N. Maeda, T. Makimura, T. Maruyama, C. X. Wang, M. Hiroki, H. Yokoyama, T. Makimoto, T. Kobayashi, and T. Enoki. DC and RF characteristics in Al2 O3 /Si3 NA4 insulated-gate Al-GaN/GaN heterostructure field-effect transistors. Jpn. J. Appl. Phys. Part 2, 44(20-23):L646-L648, 2005.Google Scholar
  47. 47.
    N. Maeda, T. Makimura, C. X. Wang, M. Hiroki, T. Makimoto, T. Kobayashi, and T. Enoki. Al2 O3 /Si3 N4 insulated gate channel-doped AlGaN/GaN heterostructure field-effect transistors with regrown ohmic structure: Low gate leakage current with high transconductance. Jpn. J. Appl. Phys. Part 1, 44(4B):2747-2750, April 2005.CrossRefGoogle Scholar
  48. 48.
    N. Maeda, C. X. Wang, T. Enoki, T. Makimoto, and T. Tawara. High drain current density and reduced gate leakage current in channel-doped AlGaN/GaN heterostructure field-effect transistors with Al2 O3 /Si3 N4 gate insulator. Appl. Phys. Lett., 87(7):073504, August 2005.CrossRefGoogle Scholar
  49. 49.
    Narihiko Maeda, Tadashi Saitoh, Kotaro Tsubaki, Toshio Nishida, and Naoki Kobayashi. Enhanced effect of polarization on electron transport properties in AlGaN/GaN doubleheterostructure field-effect transistors. Appl. Phys. Lett., 76(21):3118-3120, May 2000.CrossRefGoogle Scholar
  50. 50.
    A. Matulionis, J. Liberis, L. Ardaravicius, L. F. Eastman, J. R. Shealy, and A. Vertiatchikh. Hot-phonon lifetime in AlGaN/GaN at a high lattice temperature. Semicond. Sci. Technol., 19 (4):S421-S423, 2004.CrossRefGoogle Scholar
  51. 51.
    A. Matulionis, J. Liberis, L. Ardaravicius, J. Smart, D. Pavlidis, S. Hubbard, and L. F. Eastman. Hot-phonon limited electron energy relaxation in aln/gan. Int. J. High Speed Electron. Systems, 12(2):459-468, December 2002.CrossRefGoogle Scholar
  52. 52.
    . F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M.A. Py, D. Ducatteau, C. Gaquire, N. Grandjean, and E. Kohn. Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices? Electron Devices Meeting, 2006. IEDM Technical Digest. IEEE International Dec. 11-13, page 35.7, 2006.Google Scholar
  53. 53.
    W. J. Merz. Double hysteresis of BaTiO3 at the Curie point. Phys. Rev., 91(3):513-517, August 1953.CrossRefGoogle Scholar
  54. 54.
    U. K. Mishra, Yi F. Wu, B. P. Keller, S. Keller, and S. P. Denbaars. GaN microwave electronics. IEEE Trans. Microwave Theory Tech., 46(6):756-761, June 1998.CrossRefGoogle Scholar
  55. 55.
    A. J. Moulson and J. M. Herbert. Eletroceramics. Wiley, England, 2 edition, 2003.Google Scholar
  56. 56.
    A. J. Moulson and J. M. Herbert. Eletroceramics, chapter 6, pages 381-402. Wiley, England, 2 edition, 2003.Google Scholar
  57. 57.
    A. J. Moulson and J. M. Herbert. Eletroceramics, chapter 7. Wiley, England, 2 edition, 2003.Google Scholar
  58. 58.
    Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, Ph. DArco, and R. Dovesi. Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches. Phys. Rev. B, 65:014111, December 2002.CrossRefGoogle Scholar
  59. 59.
    M. Ochiai, M. Akita, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani. AlGaN/GaN heterostructure metal-insulator-semiconductor high-electron-mobility transistors with Si3 N4 gate insulator. Jpn. J. Appl. Phys. Part 1, 42(4B):2278-2280, April 2003.CrossRefGoogle Scholar
  60. 60.
    Hirotsugu Ogi, Yasunori Kawasaki, and Masahiko Hirao. Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients. J. Appl. Phys., 92(5):2451-2456, September 2002.CrossRefGoogle Scholar
  61. 61.
    C. H. Oxley and M. J. Uren. Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor. IEEE Trans. Electron Devices, 52(2):165-169, February 2005.CrossRefGoogle Scholar
  62. 62.
    T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. Denbaars, and U. K. Mishra. AlGaN/GaN High Electron Mobility Transistors With InGaN Back-Barriers. IEEE Electron Device Lett., 27(1):13-15, January 2006.CrossRefGoogle Scholar
  63. 63.
    . T. Palacios, A. Chakraborty, S. Keller, S. P. Denbaars, and U. K. Mishra. AlGaN/GaN HEMTs with an InGaN-based back-barrier. 63rd Device Research Conference, IEEE DRC Technical Digest, pages 181-182, 2005.Google Scholar
  64. 64.
    . T. Palacios, E. Snow, Y. Pei, A. Chakraborty, S. Keller, S. P. Denbaars, and U. K. Mishra. Ge-Spacer Technology in AlGaN/GaN HEMTs for mm-Wave Applications. IEEE IEDM Digest, Dec. May-July 2005.Google Scholar
  65. 65.
    . Tomas Palacios and U. K. Mishra. Improved technology for high frequency AlGaN/GaNHEMTs. ONR CANE/MURI Review, April 2005.Google Scholar
  66. 66.
    . Tomas Palacios, S. Rajan, S. Heikman, S. Keller, S. P. Denbaars, and U. K. Mishra. Influence of the access resistance in the RF performance of mm-wave AlGaN/GaN HEMTs. In 62nd Device Research Conference, pages 75-76, June 2004.Google Scholar
  67. 67.
    K. Y. Park, H. I. Cho, H. C. Choi, Y. H. Bae, C. S. Lee, J. L. Lee, and J. H. Lee. Device characteristics of AlGaN/GaN MIS-HFET using Al2 O3 -HfO2 laminated high-k dielectric. Jpn. J. Appl. Phys. Part 2, 43(11A):L1433-L1435, November 2004.CrossRefGoogle Scholar
  68. 68.
    Seoung H. Park and Shun L. Chuang. Spontaneous polarization effects in wurtzite GaN/AlGaN quantum wells and comparison with experiment. Appl. Phys. Lett., 76(15):1981-1983, April 2000.Google Scholar
  69. 69.
    K. E. Peterson. Silicon as a mechnical material. Proc. IEEE, 70:420-457, 1992.CrossRefGoogle Scholar
  70. 70.
    S. K. Pugh, D. J. Dugdale, S. Brand, and R. A. Abram. Electronic structure calculations on nitride semiconductors. Semicond. Sci. Technol., 14:23-31, 1999.CrossRefGoogle Scholar
  71. 71.
    . R. Ramesh. Thin Film Ferroelectric Materials and Devices. Kluwer International Series in Electronic Materials : Science and Technology. Kluwer Academic Publishers, 1997.Google Scholar
  72. 72.
    P. Regoliosi, A. Reale, A. Dicarlo, P. Romanini, M. Peroni, C. Lanzieri, A. Angelini, M. Pirola, and G. Ghione. Experimental Validation of GaN HEMTs Thermal Management by Using Photocurrent Measurements. Electron Devices, IEEE Transactions on, 53(2):182-188,2006.CrossRefGoogle Scholar
  73. 73.
    A. E. Romanov, P. Waltereit, and J. S. Speck. Buried stressors in nitride semiconductors: Influence on electronic properties. J. Appl. Phys., 97:043708, 2005.CrossRefGoogle Scholar
  74. 74.
    W. Shockley and W. T. Read. Statistics of the recombinations of holes and electrons. Phys. Rev., 87:835-842, 1952.CrossRefMATHGoogle Scholar
  75. 75.
    . M. S. Shur and M. A. Khan. GaN/AlGaN heterostructure devices: Photodetectors and field-effect transistors. MRS Bulletin, 22(2), February 1997.Google Scholar
  76. 76.
    . Jasprit Singh. Physics of Semiconductors and Their Heterostructures. McGraw-Hill, Inc., 1993.Google Scholar
  77. 77.
    Madhusudan Singh, Jasprit Singh, and Umesh Mishra. Current-voltage characteristics of polar heterostructure junctions. J. Appl. Phys., 91(5):2989-2993, 2002.CrossRefGoogle Scholar
  78. 78.
    Madhusudan Singh, Yuh R. Wu, and Jasprit Singh. Examination of LiNbO3 / nitride heterostructures. Solid-State Electron., 47(12):2155-2159, 2003.CrossRefGoogle Scholar
  79. 79.
    Madhusudan Singh, Yuh R. Wu, and Jasprit Singh. Velocity overshoot effects and scaling issues in III-V nitrides. IEEE Trans. Electron Devices, 52(3):311-316, March 2005.CrossRefGoogle Scholar
  80. 80.
    Madhusudan Singh, Yifei Zhang, Jasprit Singh, and Umesh Mishra. Examination of tunnel junctions in the AlGaN/GaN system : Consequences of polarization charge. Appl. Phys. Lett., 77(12):1867-1869, 2000.CrossRefGoogle Scholar
  81. 81.
    M. G. Stachiotti. Ferroelectricity in BaTiO3 nanoscopic structures. Appl. Phys. Lett., 84(2):251-253, January 2004.CrossRefGoogle Scholar
  82. 82.
    T. Sugimoto, Y. Ohno, S. Kishimoto, K. Maezawa, J. Osaka, and T. Mizutani. AlGaN/GaN MIS-HEMTs with ZrO2 gate insulator. Compound Semiconductors 2004, Proceedings, 184:279-282, 2005.Google Scholar
  83. 83.
    . M. Sumiya and S. Fuke. Review of polarity determination and control of GaN. MRS Internet Journal of Nitride Semiconductor Research, 9(1), 2004.Google Scholar
  84. 84.
    . S. M. Sze. Semiconductor Devices Physics and Technology. John Wiley & Sons, 1985.Google Scholar
  85. 85.
    J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra. Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical wheatstone bridge arrangement. Sensors and Actuators A: Physical, 83:47-53, 2000.CrossRefGoogle Scholar
  86. 86.
    . R. Therrien, S. Singhal, J. W. Johnson, W. Nagy, R. Borges, A. Chaudhari, A. W. Hanson, A. Edwards, J. Marquart, P. Rajagopal, C. Park, I. C. Kizilyalli, and K. J. Linthicum. A 36mm GaN-on-Si HFET Producing 368W at 60V with 70Efficiency. IEEE IEDM Digest, Dec. May-July 2005.Google Scholar
  87. 87.
    . S. Thompson, P. Packan, and M. Bohr. Mos scaling: transistor challenges for the twentyfirst century. Intel. Technol. J., 2, 1998.Google Scholar
  88. 88.
    K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, and S.E. Coe. Diamond FET Using High-Quality Polycrystalline Diamond With fT of 45 GHz and fmax of 120 GHz. Electron Device Letters, IEEE, 27(7):570-572, 2006.CrossRefGoogle Scholar
  89. 89.
    W. Walukiewicz. Intrinsic limitations to the doping of wide-gap semiconductors. Physica B: Condensed Matter, 302-303:123-134, June 2001.CrossRefGoogle Scholar
  90. 90.
    J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Lib, E. E. Hallerb, Hai Lud, and William J. Schaff. Universal bandgap bowing in group-III nitride alloys. Solid State Comm., 127:411-414, 2003.CrossRefGoogle Scholar
  91. 91.
    Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, and U. K. Mishra. Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100 V. IEEE Electron Device Lett., 18(6):290-292, June 1997.CrossRefGoogle Scholar
  92. 92.
    Yuh R. Wu, Madhusudan Singh, and Jasprit Singh. Gate leakage suppression and contact engineering in nitride heterostructures. J. Appl. Phys., 94(9):5826-5831, November 2003.Google Scholar
  93. 93.
    Yuh-Renn Wu and Jasprit Singh. Polar heterostructure for multi-function devices: Theoretical studies. IEEE Trans. Electron Devices, 52(2):284-293, February 2005.Google Scholar
  94. 94.
    Yuh-Renn Wu, Madhusudan Singh, and Jasprit Singh. Gate leakage suppression and contact engineering in nitride heterostructures. Mat. Res. Soc., 798:Y11.1, 2004.Google Scholar
  95. 95.
    Yuh-Renn Wu, Madhusudan Singh, and Jasprit Singh. Sources of transconductance collapse in III-V nitrides - Consequences of velocity-field relations and source-gate design. IEEE Trans. Electron Devices, 52(6):1048-1054, June 2005.Google Scholar
  96. 96.
    Yuh Renn Wu, Madhusudan Singh, and Jasprit Singh. Device Scaling Physics and Channel Velocities in AlGaN-GaN HFETs: Velocities and Effective Gate Length. IEEE Trans. Electron Devices, 53(4):588-593, April 2006.CrossRefGoogle Scholar
  97. 97.
    Kiyoyuki Yokoyama and Karl Hess. Monte Carlo study of electronic transport in Al1−xGaxAs/GaAs single-well heterostructures. Phys. Rev. B, 33(8):5595-5606, 1986.CrossRefGoogle Scholar
  98. 98.
    S. B. Zhang, S. H. Wei, and Alex Zunger. Microscopic origin of the phenomenological equilibrium “doping limit rule” in n-type III-V semiconductors. Phys. Rev. Lett., 84(6):1232-1235, February 2000.Google Scholar
  99. 99.
    Y. Zhang and J. Singh. Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys., 85(1):587-594, January 1999.CrossRefGoogle Scholar
  100. 100.
    Y. Zhang and J. Singh. Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys., 85(1):587-594, 1999.CrossRefGoogle Scholar
  101. 101.
    Yifei Zhang and Jasprit Singh. Monte Carlo studies of two dimensional transport in GaN/AlGaN transistors : Comparison with transport in AlGaAs/GaAs channels. J. Appl. Phys., 89(1):386-389, 2001.CrossRefGoogle Scholar
  102. 102.
    Yifei Zhang, I. P. Smorchkova, C. R. Elsass, Stacia Keller, James P. Ibbetson, Steven Denbaars, Umesh K. Mishra, and Jasprit Singh. Charge control and mobility in AlGaN/GaN transistors: Experimental and theoretical studies. J. Appl. Phys., 87(11):7981-7987, June 2000.CrossRefGoogle Scholar
  103. 103.
    T. Zimmermann, M. Neuburger, P. Benkart, F.J. Hernandez-Guillen, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn. Piezoelectric GaN sensor structures. IEEE Electron Device Letters, 27:309-312, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yuh-Renn Wu
    • 1
  • Madhusudan Singh
    • 2
  • Jasprit Singh
    • 2
  1. 1.Department of Electrical EngineeringNational Taiwan UniversityTaiwan
  2. 2.Electrical Engineering and Computer Science DeptUniversity of MichiganAnn ArborUSA

Personalised recommendations