Advertisement

Theoretical Approach to Polarization Effects in Semiconductors

  • Piotr Boguslawski
  • J. Bernholc

As a rule, investigations of physical effects in solids are motivated by the need of understanding at a fundamental level, which facilitates their effective application in the fabrication of devices. The problem of electrical polarization of piezoelectric, ferroelectric, and pyroelectric solids is no exception. In the last 15 years we have witnessed very intensive investigations of the theory of spontaneous polarization, as well as of the dielectric response of crystals to external perturbations. Our current understanding stems from the development of electronic structure calculations based on first principles, and subsequently from evolution of appropriate theoretical approaches allowing for both a proper definition of polarization and accurate calculations. From the experimental side, much of the impetus came from experimental work devoted to, e.g., GaN-like group-III nitrides, in which internal electric fields of both pyro- and piezoelectric origin are large, determining the properties of quantum structures and devices [1]. Spectacular progress in this area has led to innovative devices described in several chapters of this book.

Keywords

Polarization Effect Surface Charge Density Spontaneous Polarization Piezoelectric Effect Berry Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see, for example, S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys. 86,1 1999.CrossRefGoogle Scholar
  2. 2.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993); D. Vanderbilt and R. D. King-Smith, ibid. 48, 4442 (1993).Google Scholar
  3. 3.
    R. Resta, Rev. Mod. Phys. 66, 899 1994.CrossRefGoogle Scholar
  4. 4.
    R. M. Martin, Phys. Rev. B5, 1607 1972.Google Scholar
  5. 5.
    J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York 1967.Google Scholar
  6. 6.
    For an excellent review see S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gianozzi, Rev. Mod. Phys. 73, 515 2001.CrossRefGoogle Scholar
  7. 7.
    R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).MATHGoogle Scholar
  8. 8.
    See, for example, J. Bernholc, “Computational materials science: the era of applied quantum mechanics,” Physics Today, 52, September, p. 30 1999.CrossRefGoogle Scholar
  9. 9.
    E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 1996.CrossRefGoogle Scholar
  10. 10.
    R. M. Martin, Phys. Rev. B9, 1998 1974.CrossRefGoogle Scholar
  11. 11.
    D. Vanderbilt, J. Phys. Chem. Solids, 61, 147 2000.CrossRefGoogle Scholar
  12. 12.
    S. M. Nakhmanson, V. Meunier, J. Bernholc, M. Buongiorno Nardelli, Phys. Rev. B 67, 235406 2003.CrossRefGoogle Scholar
  13. 13.
    N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 1997.CrossRefGoogle Scholar
  14. 14.
    F. Gygi, J.-L. Fattebert, and E. Schwegler, Computer Physics Comm., 155, 1 2003.CrossRefGoogle Scholar
  15. 15.
    A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734 1988.CrossRefGoogle Scholar
  16. 16.
    M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, Phys. Rev. Lett. 64, 1777 1990.CrossRefGoogle Scholar
  17. 17.
    F. Bernardini and V. Fiorentini, Phys. Rev. B 57, R9427 1997.CrossRefGoogle Scholar
  18. 18.
    A. Al-Yacoub and L. Bellaiche, Appl. Phys. Lett. 79, 2166 2001.CrossRefGoogle Scholar
  19. 19.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 1997.CrossRefGoogle Scholar
  20. 20.
    K. Shimada, T. Sota, K. Suzuki, and H. Okumura, Jpn. J. Appl. Phys. Part 2, 37, L1421 1998.CrossRefGoogle Scholar
  21. 21.
    F. Bernardini and V. Fiorentini, Phys. Rev. B 64, 85207 (2001); ibid. 65, 129903 (2002).Google Scholar
  22. 22.
    M. Buongiorno Nardelli, K. Rapcewicz, and J. Bernholc, Phys. Rev. B 55, R7323 (1997); Appl. Phys. Lett. 71, 31315 (1997).Google Scholar
  23. 23.
    D. B. Laks et al., Phys. Rev. Lett. 66, 648 (1991); C. G. Van De Walle et al., Phys. Rev. B 47, 9425 (1993).Google Scholar
  24. 24.
    S. B. Zhang and John E. Northrup, Phys. Rev. Lett. 67, 2339 1991.CrossRefGoogle Scholar
  25. 25.
    P. Bogusławski, E. Briggs, and J. Bernholc, Phys. Rev. B, Rapid Commun. 51, 17255 1995.Google Scholar
  26. 26.
    S. M. Hu et al., Phys. Rev. Lett. 67, 1450 1991.CrossRefGoogle Scholar
  27. 27.
    N. Moriya, et al., Phys. Rev. Lett. 75, 1981 1995.CrossRefGoogle Scholar
  28. 28.
    T. T. Fang et al., Appl. Phys. Lett. 68, 7911995.CrossRefGoogle Scholar
  29. 29.
    S. Kobayashi et al., J. Appl. Phys. 86, 5480 1999.CrossRefGoogle Scholar
  30. 30.
    Be in InP/InGaAs: W. Haussler, J. W. Walter, and J. Muller, Mat. Res. Symp. Proc. vol. 147, 333 (1989); Be and Zn in AlGaAs/GaAs: T. Humer-Hager et al., J. Appl. Phys. 66, 181 (1989); Zn in InGaAsP/InP: R. Weber et al., J. Electrochem. Soc. 138, 2812 (1991).Google Scholar
  31. 31.
    A. Gaymann, M. Maier, and K. Kohler, J. Appl. Phys. 86, 4312 1999.CrossRefGoogle Scholar
  32. 32.
    K. Kohler et al., J. Appl. Phys. 97, 104914 2005.CrossRefGoogle Scholar
  33. 33.
    P. Boguslawski, N. Gonzalez Szwacki, and J. Bernholc, Phys. Rev. Lett. 96, 185501 2006.CrossRefGoogle Scholar
  34. 34.
    R. D. Chang, P. S. Choi, and D. L. Kwong, Appl. Phys. Lett. 72, 1709 1998.CrossRefGoogle Scholar
  35. 35.
    A. F. Wright et al., J. Appl. Phys. 94, 2311 (2003); S. Limpijumnong and C. Van de Walle, Phys. Rev. B 68, 235203 (2003).Google Scholar
  36. 36.
    O. Ambacher et al., J. Appl. Phys. 87, 334 2000.CrossRefGoogle Scholar
  37. 37.
    B. S. Kang et al., Appl. Phys. Lett. 84, 4635 2004.CrossRefGoogle Scholar
  38. 38.
    This value is very close to 1.7 eV obtained for H in GaN by S. M. Myers et al., J. Appl. Phys. 88,4676 (2000).Google Scholar
  39. 39.
    P. Boguslawski and J. Bernholc, Phys. Rev. B 56, 9496 1997.CrossRefGoogle Scholar
  40. 40.
    P. Boguslawski and J. Bernholc, Phys. Rev. B 59, 1567 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Piotr Boguslawski
    • 1
  • J. Bernholc
    • 2
  1. 1.Institue of PhysicsPolish Academy of SciencesPoland
  2. 2.Center for High Performance Simulation & Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations