Skip to main content

The Persulfate Process for the Mediated Oxidation of Organic Pollutants

  • Chapter
  • First Online:

Abstract

The electrochemical treatment of effluents with conventional anodic materials is not very efficient in terms of organic pollutant oxidation and produces a large amount of oxygen. These results can be enhanced by mediated oxidation that produces stronger oxidants than oxygen which oxidize the organic pollutants. New electrode materials like, boron-doped diamond (BDD) shows a high selectivity toward organic pollutants and the oxygen is not easily produced. Consequently the contribution of mediated oxidation cannot be excluded, but probably occurs in a different way. This chapter re-examines at the light of the present knowledge the mediated oxidation with the BDD anode, tests the used mediated oxidation method, and proposes an alternative method to increase the positive contribution of this oxidation during electrochemical treatment with BDD anodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen, T. (1951). The oxidation of oxalate ion by peroxydisulfate. J. Am. Chem. Soc. 73, 3589–3593.

    Article  CAS  Google Scholar 

  • Alvarez-Gallegos and D. Pletcher (1999). The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochim. Acta 44, 2483–2492.

    Google Scholar 

  • Anipsitakis, K. and D. Dionisiou (2002). Transition metal/UV-based advance oxidation technologies for water decontamination. Appl. Catal. B: Environ. 54, 155–163.

    Article  Google Scholar 

  • Berlin, A. (1986). Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinetic Catal. 27, 34–39.

    Google Scholar 

  • Brillas, E., E. Mur, and J. Casado (1996). Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-FED cathode. J. Electrochem. Soc. 143, L49–L53.

    Article  CAS  Google Scholar 

  • Buxton, G., C. Greenstock, W. Helman, and A. Ross (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886.

    CAS  Google Scholar 

  • Canizares, P., J. Lobato, and M. Rodrigo (2003). Electrochemical oxidation of aqueous caboxylic acid wastes using diamond thin-film electrodes. Ind. Eng. Chem. Res. 42, 956–962.

    Article  CAS  Google Scholar 

  • Canizares, P., J. Garcja-Gomez, C. Saez, and M. Rodrigo (2004). Electrochemical oxidation of several chlorophenols on diamond electrodes. Part II. Influence of waste characteristic and operating conditions. J. Appl. Electrochem. 34, 87–94.

    CAS  Google Scholar 

  • Carbery, J. (1976). Chemical and Catalytic Reaction Engineering. McGraw-Hill, New York, NY.

    Google Scholar 

  • Comninellis, C. and A. Nerini (1995). Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 24, 23–28.

    Google Scholar 

  • Czarnetzki, L. and L. Janssen (1992). Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J. Appl. Electrochem. 22, 315–324.

    Article  CAS  Google Scholar 

  • Do, J. and P. Chen (1994). In-situ oxidative degradation of formaldehyde with hydrogen peroxide electrogenerated on the modified graphites. J. Appl. Electrochem. 24, 936–942.

    Article  CAS  Google Scholar 

  • Dogliotti, L. and E. Hayon (1967). Flash photolysis of persulfate in aqueous solutions. Study of sulfate and ozonite anions. J. Phys. Chem. 71, 2511–2516.

    CAS  Google Scholar 

  • Gallopo, A. and J. Edwards (1971). Kinetics and mechanism of the spontaneous and metal modified oxidation of ethanol by peroxydisulfate ion. J. Org. Chem. 36, 4089–4096.

    Article  Google Scholar 

  • Gherardini, L., P. Michaud, M. Panizza, C. Comninellis, and N. Vatistas (2001). Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency. J. Electrochem. Soc. 148, D78–D82.

    Article  CAS  Google Scholar 

  • Goulden, P. and D. Anthony (1978). Kinetics of uncatalyzed peroxydisulfate oxidation of organic materials in fresh water. Anal. Chem. 50, 953–958.

    Article  CAS  Google Scholar 

  • Hayou, E., A. Treinin, and J. Wilf (1972). Electronic spectra, photochemistry and autoxidation mechanism of sulfite–bisulfite–pyrosulfite systems. J. Am. Chem. Soc. 94, 47–57.

    Article  Google Scholar 

  • House, D. (1962). Kinetics and mechanism of oxidation by peroxydisulfate. Chem. Rev. 62, 185–203.

    Article  CAS  Google Scholar 

  • Huang, K., Z. Zhao, G. Hoag, A. Dahmani, and B. Block (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551–560.

    Article  CAS  Google Scholar 

  • Ibl, N. and H. Vogt (1981). In: J.O.’M. Bockris, B.E. Conway, E. Yeager, R.E. White (Eds), Comprehensive Treatise of Electrochemistry, vol. 2, pp. 224. Plenum, New York, NY.

    Google Scholar 

  • Iniesta, J., P. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis (2001a). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578.

    Article  CAS  Google Scholar 

  • Iniesta, J., P. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis (2001b). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578.

    Article  CAS  Google Scholar 

  • Katsuki, N., E. Takashashi, M. Toyoda, T. Kuosu, M. Iida, S. Wakika, Y. Nishiki, and T. Shimamune (1998). Water electrolysis using diamond thin-film electrodes. J. Electrochem. Soc. 145, 2358–2362.

    Article  CAS  Google Scholar 

  • Kolthoff, I. and J. Müller (1951). The chemistry of persulfate: I. The kinetics and mechanism of the persulfate ion in aqueous medium. J. Am. Chem. Soc. 73, 3055–3059.

    CAS  Google Scholar 

  • Kraft, A., M. Stadelmann, M. Wünsche, and M. Blaschke (2006). Electrochemical ozone production using diamond anodes and a solid polymer electrolyte. Electrochem. Commun. 8, 883–886.

    Article  CAS  Google Scholar 

  • Kronholm, J., H. Metsala, K. Hartonen, and M. Riekkola (2001). Oxidation of 4-chloro-3-methylphenolin pressurized hot water/supercritical with potassium persulfate as oxidant. Environ. Sci. Technol. 35, 3247–3251.

    Google Scholar 

  • Liang, C., C. Bruell, M. Marley, and K. Sperry (2003). Thermally activated persulfate oxidation of trichloroethylene (tce) and 1,1,1-trichloroethane in acqueous systams and soil slurries. Soil Sediment Contam. 12, 207–228.

    Article  CAS  Google Scholar 

  • Michaud, P., E. Mahe, W. Haenni, A. Perret, and C. Comninellis (2000). Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem. Solid State 3, 77–79.

    Article  CAS  Google Scholar 

  • Michaud, P., M. Panizza, L. Quattara, T. Diaco, G. Foti, and C. Comninellis (2003). Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J. Appl. Electrochem. 33, 151–154.

    Article  CAS  Google Scholar 

  • Panizza, M. and G. Cerisola (2001). Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res. 36, 3987–3992.

    Article  Google Scholar 

  • Saha, M., T. Furuta, and Y. Nishita (2003). Electrochemical synthesis of sodium peroxycarbonate at boron-doped diamond electrodes. Electrochem. Solid State 6, D5–D7.

    Article  CAS  Google Scholar 

  • Saha, M., T. Furuta, and Y. Nishita (2004). Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode. Electroch. Commun. 6, 201–204.

    Article  CAS  Google Scholar 

  • Serrano, K., P. Michaud, C. Comninellis, and A. Savall (2002). Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 48, 431–436.

    Article  CAS  Google Scholar 

  • Szpyrkowicz, L., M. Radaelli, and S. Daniele (2005). Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants. Catal. Today 100, 425–429.

    Article  CAS  Google Scholar 

  • Tanner, D. and S. Osmar (1987). Oxidative decarbonation on the mechanism of potassium persulfate promoted decarbonation reaction. J. Org. Chem. 52, 4689–4693.

    Article  CAS  Google Scholar 

  • Thompson, R. (1981). Catalytic decomposition of peroxymonosulfate in aqueous perchloric acid by dual catalysts. Inorg. Chem. 20, 1005–1010.

    Article  CAS  Google Scholar 

  • Walling, C. (1975). Fenton’s reagent revisited. Accounts Chem. Res., 8, 125–131.

    Article  CAS  Google Scholar 

  • Zhang, H., D. Zhang, and J. Zhou (2006). Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater. 135, 106–111.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vatistas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vatistas, N., Comninellis, C. (2010). The Persulfate Process for the Mediated Oxidation of Organic Pollutants. In: Comninellis, C., Chen, G. (eds) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_9

Download citation

Publish with us

Policies and ethics