Advertisement

The Persulfate Process for the Mediated Oxidation of Organic Pollutants

  • N. Vatistas
  • Ch. Comninellis
Chapter

Abstract

The electrochemical treatment of effluents with conventional anodic materials is not very efficient in terms of organic pollutant oxidation and produces a large amount of oxygen. These results can be enhanced by mediated oxidation that produces stronger oxidants than oxygen which oxidize the organic pollutants. New electrode materials like, boron-doped diamond (BDD) shows a high selectivity toward organic pollutants and the oxygen is not easily produced. Consequently the contribution of mediated oxidation cannot be excluded, but probably occurs in a different way. This chapter re-examines at the light of the present knowledge the mediated oxidation with the BDD anode, tests the used mediated oxidation method, and proposes an alternative method to increase the positive contribution of this oxidation during electrochemical treatment with BDD anodes.

Keywords

Salicylic Acid Chemical Oxygen Demand Organic Pollutant Current Efficiency Anodic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen, T. (1951). The oxidation of oxalate ion by peroxydisulfate. J. Am. Chem. Soc. 73, 3589–3593.CrossRefGoogle Scholar
  2. Alvarez-Gallegos and D. Pletcher (1999). The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochim. Acta 44, 2483–2492.Google Scholar
  3. Anipsitakis, K. and D. Dionisiou (2002). Transition metal/UV-based advance oxidation technologies for water decontamination. Appl. Catal. B: Environ. 54, 155–163.CrossRefGoogle Scholar
  4. Berlin, A. (1986). Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinetic Catal. 27, 34–39.Google Scholar
  5. Brillas, E., E. Mur, and J. Casado (1996). Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-FED cathode. J. Electrochem. Soc. 143, L49–L53.CrossRefGoogle Scholar
  6. Buxton, G., C. Greenstock, W. Helman, and A. Ross (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886.Google Scholar
  7. Canizares, P., J. Lobato, and M. Rodrigo (2003). Electrochemical oxidation of aqueous caboxylic acid wastes using diamond thin-film electrodes. Ind. Eng. Chem. Res. 42, 956–962.CrossRefGoogle Scholar
  8. Canizares, P., J. Garcja-Gomez, C. Saez, and M. Rodrigo (2004). Electrochemical oxidation of several chlorophenols on diamond electrodes. Part II. Influence of waste characteristic and operating conditions. J. Appl. Electrochem. 34, 87–94.Google Scholar
  9. Carbery, J. (1976). Chemical and Catalytic Reaction Engineering. McGraw-Hill, New York, NY.Google Scholar
  10. Comninellis, C. and A. Nerini (1995). Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 24, 23–28.Google Scholar
  11. Czarnetzki, L. and L. Janssen (1992). Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J. Appl. Electrochem. 22, 315–324.CrossRefGoogle Scholar
  12. Do, J. and P. Chen (1994). In-situ oxidative degradation of formaldehyde with hydrogen peroxide electrogenerated on the modified graphites. J. Appl. Electrochem. 24, 936–942.CrossRefGoogle Scholar
  13. Dogliotti, L. and E. Hayon (1967). Flash photolysis of persulfate in aqueous solutions. Study of sulfate and ozonite anions. J. Phys. Chem. 71, 2511–2516.Google Scholar
  14. Gallopo, A. and J. Edwards (1971). Kinetics and mechanism of the spontaneous and metal modified oxidation of ethanol by peroxydisulfate ion. J. Org. Chem. 36, 4089–4096.CrossRefGoogle Scholar
  15. Gherardini, L., P. Michaud, M. Panizza, C. Comninellis, and N. Vatistas (2001). Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency. J. Electrochem. Soc. 148, D78–D82.CrossRefGoogle Scholar
  16. Goulden, P. and D. Anthony (1978). Kinetics of uncatalyzed peroxydisulfate oxidation of organic materials in fresh water. Anal. Chem. 50, 953–958.CrossRefGoogle Scholar
  17. Hayou, E., A. Treinin, and J. Wilf (1972). Electronic spectra, photochemistry and autoxidation mechanism of sulfite–bisulfite–pyrosulfite systems. J. Am. Chem. Soc. 94, 47–57.CrossRefGoogle Scholar
  18. House, D. (1962). Kinetics and mechanism of oxidation by peroxydisulfate. Chem. Rev. 62, 185–203.CrossRefGoogle Scholar
  19. Huang, K., Z. Zhao, G. Hoag, A. Dahmani, and B. Block (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551–560.CrossRefGoogle Scholar
  20. Ibl, N. and H. Vogt (1981). In: J.O.’M. Bockris, B.E. Conway, E. Yeager, R.E. White (Eds), Comprehensive Treatise of Electrochemistry, vol. 2, pp. 224. Plenum, New York, NY.Google Scholar
  21. Iniesta, J., P. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis (2001a). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578.CrossRefGoogle Scholar
  22. Iniesta, J., P. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis (2001b). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578.CrossRefGoogle Scholar
  23. Katsuki, N., E. Takashashi, M. Toyoda, T. Kuosu, M. Iida, S. Wakika, Y. Nishiki, and T. Shimamune (1998). Water electrolysis using diamond thin-film electrodes. J. Electrochem. Soc. 145, 2358–2362.CrossRefGoogle Scholar
  24. Kolthoff, I. and J. Müller (1951). The chemistry of persulfate: I. The kinetics and mechanism of the persulfate ion in aqueous medium. J. Am. Chem. Soc. 73, 3055–3059.Google Scholar
  25. Kraft, A., M. Stadelmann, M. Wünsche, and M. Blaschke (2006). Electrochemical ozone production using diamond anodes and a solid polymer electrolyte. Electrochem. Commun. 8, 883–886.CrossRefGoogle Scholar
  26. Kronholm, J., H. Metsala, K. Hartonen, and M. Riekkola (2001). Oxidation of 4-chloro-3-methylphenolin pressurized hot water/supercritical with potassium persulfate as oxidant. Environ. Sci. Technol. 35, 3247–3251.Google Scholar
  27. Liang, C., C. Bruell, M. Marley, and K. Sperry (2003). Thermally activated persulfate oxidation of trichloroethylene (tce) and 1,1,1-trichloroethane in acqueous systams and soil slurries. Soil Sediment Contam. 12, 207–228.CrossRefGoogle Scholar
  28. Michaud, P., E. Mahe, W. Haenni, A. Perret, and C. Comninellis (2000). Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem. Solid State 3, 77–79.CrossRefGoogle Scholar
  29. Michaud, P., M. Panizza, L. Quattara, T. Diaco, G. Foti, and C. Comninellis (2003). Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J. Appl. Electrochem. 33, 151–154.CrossRefGoogle Scholar
  30. Panizza, M. and G. Cerisola (2001). Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res. 36, 3987–3992.CrossRefGoogle Scholar
  31. Saha, M., T. Furuta, and Y. Nishita (2003). Electrochemical synthesis of sodium peroxycarbonate at boron-doped diamond electrodes. Electrochem. Solid State 6, D5–D7.CrossRefGoogle Scholar
  32. Saha, M., T. Furuta, and Y. Nishita (2004). Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode. Electroch. Commun. 6, 201–204.CrossRefGoogle Scholar
  33. Serrano, K., P. Michaud, C. Comninellis, and A. Savall (2002). Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 48, 431–436.CrossRefGoogle Scholar
  34. Szpyrkowicz, L., M. Radaelli, and S. Daniele (2005). Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants. Catal. Today 100, 425–429.CrossRefGoogle Scholar
  35. Tanner, D. and S. Osmar (1987). Oxidative decarbonation on the mechanism of potassium persulfate promoted decarbonation reaction. J. Org. Chem. 52, 4689–4693.CrossRefGoogle Scholar
  36. Thompson, R. (1981). Catalytic decomposition of peroxymonosulfate in aqueous perchloric acid by dual catalysts. Inorg. Chem. 20, 1005–1010.CrossRefGoogle Scholar
  37. Walling, C. (1975). Fenton’s reagent revisited. Accounts Chem. Res., 8, 125–131.CrossRefGoogle Scholar
  38. Zhang, H., D. Zhang, and J. Zhou (2006). Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater. 135, 106–111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversity of PisaPisaItaly

Personalised recommendations